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QUASI-CYLINDRICAL THEORY OF WING-BODY INTERFERENCE AT SUPERSONIC SPEEDS AND 
COMPARISON WITH EXPERIMENT 

By JACK K. NIELSEN 

SUMMARY 

A theoretical method i s  presented for calculating the flow 
Jield about a wing-body combination employing bodies deviat- 
ing only slightly in shape from a circular cylinder. If the 
combination possesses a horizontal plane of symmetry, no 
restrictions are required on wing plan form in the application 
of the method to the zero angle-of-attack condition. If the 
combination i s  l$ting, the method requires that the wing lead- 
ing edges be supersonic. Then the extent of the flow field 
that can be calculated depends on  the wing aspect ratio and 
whether or not the trailing edges are supersonic. TWO methods 
of calculating the flow jield, the W-function method and the 
multipole method, are presented. The methods as presented 
are accurate to the order of quasi-cylindrical theory. 

The method is applied to the calculation of the pressureJield 
acting between a circular cylindrical body and a rectangular 
wing. These calculations are .for combinations for which the 
eflective aspect ratio of the wing panels joined together is greater 
than 2 and for which the eflective chord-radius ratio is 4 or less. 
Two cases are calculated, the case in which the body remains 
at zero angle qf attack while the wing incidence is varied and 
the case in which the wing remains at zero angle of incidence 
while the body angle of attack i s  varied. I t  was found that 

f o u r  Fourier components of the interference jield are required 
to establish the pressure jield, but that only one component i s  
necessary to establish the span loading. A detailed discussion 
qf the physical nature of the interference pressure jield i s  given. 

An experiment was performed especially for the purpose 
of checking the calculative examples. The investigation was 
performed at Mach numbers qf 1.48 and 2.00 with a rectangular 
wing and body combination. Both the variable wing-incidence 
and angle-of-attack cases were covered. It was found that 
for su$iciently small angles, about 2’ or less, the present method 
predicts the pressure distributions within about f 10 percent 
f o r  both cases. Important nonlinear e$ects were found for 
angles of attack and incidence of 4’ to 6 O ,  and important 
viscous e$ects were usually found where laminar boundary 
layers encountered shock waves. 

I 

INTRODUCTION 

In recent years the problems of supersonic wing-body 
interference have occupied the atten tion of many workers in 
aerodynamics. The large amount of effort expended on the 
subject is a result of the important effects that interference 
can have on the overall aerodynamic characteristics of 

wing-body combinations. The trend toward using large 
bodies and small wings at supersonic speeds, especially for 
missiles, is the prime reason for the increased importance 
of wing-body interference a t  these speeds. 

Much significant work has already been done in the field. 
In reference 1, Spreiter has shown that when a wing-body 
combination is slender in the sense of his paper simple expres- 
sions for the lift and moment coefficients can be derived. 
These results were obtained by reducing a three-dimen- 
sional problem for the wave equation to a two-dimensional 
problem for Laplace’s equation. Another approach is that 
of simplifying the differential equation by using conical 
boundaries. Following this approach, Browne, Friedman, 
and Hodes in reference 2 obtained a solution for the pressure 
field of a wing-body combination composed of a flat tri- 
angular wing and a cone both with a common apex. The 
use of all-conical boundaries reduces the problem to one of 
conical flow for which powerful methods of solution are avail- 
able. 

Several investigators have presented methods for deter- 
mining the pressure field, including the effect of interference, 
acting on wing-body combinations employing circular 
fuselages and wings not necessarily slender. In  reference 3, 
Ferrari has given an approximate method of obtaining the 
“interference of the wing on the streamlined body, assum- 
ing that the induced field generated by the wing is that 
which would exist around the wing if i t  were placed in the 
uniform stream alone.” Similarly, the interference of the 
body on the wing has been determined. Tlic results of 
Ferrari thus represent a first approximation, and while u 
second approximation using the method is possible in prin- 
ciple it appears that too much labor would be involved. 
Morikawa in reference 4 has obtained an approsimatc solu- 
tion by solving a boundary-value problem and has also 
obtained a closed solution by approximating the threc-di- 
mensional model by a planar model. Bolton-Shaw in rcfcr- 
ence 5 has obtained a solution by satisfying boundary con- 
ditions at a finite number of points ratlicr. than over 1% surfuw. 

Another method for estimating the effect of interfercncQc 
on the aerodyiiamic properties of wing-body combiilat ions 
which arc not necessarily slender is given in refcrpcc 6. 
In  this refcreiice the method is applied to determining tho 
drag of symmetrical wing-body combinations; it is also ap- 
plicable to the calculations of the lifting pressures acting on 
combinations employing wings with supersonic edges. In 

Supersedes NACA TN 2677 “Wing-Body Interference at Supersonic Speeds With an Application to Comhinations With Rectangular Wings,” by Jack N. Nivlsen and William C. 
Pitts 1952, and NACA Th’ 3125 “Comparison Between Theory and Experiment for Interference Pressure Field Between Wing and nody a t  fiupersonic Spceds,” by William C. Pitts, Jack 
N. Nielsm, and Maurice P. Gionfriddo, 1954 
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reference 7, an essentially new method of solving a wide 
class of wing-body interference problems has been presented. 
The method is based on decomposing the interference of a 
wing-body combination into a number of Fourier components 
and solving the problem for each component in a manner 
similar to that used by von KBrmhn and Moore in reference 
8 for bodies of revolution. 

Phinnej-, reference 9, has compared the methods of refer- 
ences 3, 6, and 7 by applying each to the calculation of the 
pressure field acting on a circular cylinder intersected by an 
oblique shock wave. In  reference 10 the theory of reference 
7 has been applied to the computation of the pressure dis- 
tributions acting on a rectangular wing and body combina- 
tion with the body a t  zero angle of attack and the wing a t  
incidence. In  reference 11 Bailey and Phinney have sp- 
plied the method of reference 7 to the calculation of tho 
pressures on the body of a rectangular wing and body com- 
bination a t  angle of attack but with the wing at  zero angle 
of attack. In  reference 12 the same authors have com- 
pared their calculations with some experimental measure- 
ments made at a Mach number of 1.9. In  reference 13 the 
experimental pressure distributions acting on a rectangular 
wing and body combination a t  Mach number 1.48 and 2.00 
are extensively compared with theoretical calculations bawd 
on the method of reference 7. 

In  part I of the present report the theory of wing-body 
interference for combinations employing quasi-cylindrical 
bodies is presented, including recent developments not pre- 
viously reported in references 7, 10, or 13. The theory is 
applicable to combinations a t  zero angle of attack with 
horizontal planes of sjmmetrj- or combinations a t  angle of 
attack if the wing leading edges are supersonic. I n  part 
I1 the theory is applied to the calculation of the pressures 
and span loadings for a rectangular wing and body combi- 
nation for the case of the bod-  at zero angle of attack and 
variable wing incidence and for the case of the wing at zero 
wing incidencc and variable body angle of at tack. The cal 
culations for the sccontl case are more complete than hitherto. 
In  part I11 extensiv~ comparison is made between the cal- 
culations of part IT n ~ c i  the result of experiments at Mach 
numbers of 1.48 and :..OO especially designed to check the 
calculations. 

SYMBOLS 

body radius, in. 
aspect ratio of wing formed by joining exposed 

chord of rectangular wing, in. 

effective chord-radius ratio, - 

strength of multipole of order 2n at point 2 of 

chord a t  wing-body juncture, in. 
chord at  wing tip. in. 

arbitrary functions of s 

velocity amplitude function of 11th Fourier com- 
ponent, in./sec 

wing-incidence angle, radians except where other- 
wise designated, Dositive for trailing edge donm 

half-wings together 

C 

body axis 

modified Bessel functions of the first and second 
kinds, respectively 
Lwc 
LW -J a B = o  

lift of combination back to wing trailing edge. 
lb; Laplace transform operator 

inverse Laplace transform operator 
lift on exposed half-wings joined together, lb 
lift on exposed half-wings in combination with 

index identifying sets of multipole solutions 
free-stream Mach number 
characteristic functions for obtaining multipole 

number of Fourier component 
static pressure, lb/sq in. 
static pressure in free stream, lb/sq in. 
static pressur? a t  any particular orifice of wing- 

body combination when aB=iw=O, lb/sq in. 
static pressure at wind-tunnel wall orifice. lb/sq 

in. 

for theoretical pressure coefficient, p--pl: 

interference pressure coefficient due to nth 

free-stream dynamic pressure, lb/sq in. 
dynamic pressure based on condition ats wall 

cylindrical coordinates: y = r  cos 8, z=r sin e 

Reynolds number based on wing-chord length 
real part 
semispan of wind-body combination, in. : Laplace 

axial, lateral, and vertical perturbation velocities. 

free-stream velocit-j-, in./sec 
characteristic functions for calculating pressurc 

coefficient 
Cartesian coordinates: 2, axial Coordinate ; y, 

lateral coordinate; I, vertical coordinate, in. 
(See fig. 1.) 

body angle of attack, radians except where other- 
wise designated 

upmash angle of body-alone flow, radians 
wing angle of attack, radians 

effective aspect ratio 
Dirac delta function; 

body, lb 

s treugths 

2u 
1’ 

-- 
P O  

calculations 

Fourier component 

orifice of wind tunnel, lb/sq in. 

(See fig. 1.) 

transform of r coordinate 

respectively, in. /sec 

>llw- 1 

6(2)=0, r z o ;  S(z)dx= 1 

polar angle (See fig. I.) 
C t  taper, - 
cr 

dummy variable of integration 
swoeD angle of wing. leading. edge A I U  - - -  
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interference perturbation velocity potential 
nth Fourier component perturbation velocity 

combination perturbation vzlocity potential 
wing-alone perturbation velocity potential 
wing-alone perturbation velocity potential due to 

the exposed right half of the wing 
wing-alone perturbation velocity potential due to 

the exposed left half of the wing 
wing-alone perturbation velocity potential due to 

the portion of wing inside the region occupied 
by body 

potential 

Laplace transform of cp 

SUBSCRIPTS 

lower surface of combination 
upper surface of combination 

I. GENERAL INTERFERENCE THEORY 

PHYSICAL PRINCIPLES 

Prior to a mathematical formulation of the wing-body 
interference problem, it is well to define interference and to 
explain how it arises. With a stationary wing or a stationary 
body in a uniform parallel flow, there are associated the 
wing-alone and body-alone flow fields. Tlie wing-alone flow 
field does not, in general, produce flow tangential to the 
position to be occupied by the body surface. As a result 
an interference flow field must arise to canct.1 the flow field 
induced normal to the body by the wing. For this reason, 
the sum of the body-alone plus wing-alone flow fields will 
not be the flow field for tho body and wing together. Thc 
difference between the flow field of the body and wing to- 
gether and the sum of the body-alone and wing-alone flow 
fields is defined to be the intcrfcrence flow field. 

The effects of wing-body interfcrcncc on tlie flow field of 
a wing-body combination arc: illustrated by considering 
separately tho effects of each component on the others. For 
the purposcs of this discussion figure 1 shows a wing-body 
combination divided into thc part in front of the leading 
cdge of the wing-body juncture, hcnc*efortli called tlie nose, 
the winged part antl thc part bcliiritl the wing trailing edge, 
Iic~nccfortli callrd the aftc.rl)ody. If the combination pos- 
swses a horizontal planc of symmctry and thc angle of attack 
is zero, no restrictions on wing plan form are necessary. 
lfowever, if the wing is twistrd or crtmbcred or if the nose 
is a t  angle of attack, tlicii thc wing lcading edges must bt. 
supersonic for the following tliscwssion to apply. 

-L 

V- 
-c 

region of influence of 

/ 
/ - 

\ 

/ 
/ 

'\ Nose 
\ 
\ 
\ 

FIGURE 1.-Components of typical wing-body combinatioit. 

Effect of nose on wing.-Consider now the flow as it 
progresses past the body. At the body nose the flow is that 
around a body of revolution, and it can be treated by existing 
methods such as those of references 8 and 14. When the 
body is a t  angle of attack cyB, there is an upwash field in the 
horizontal plane of symmetry of the body. If the body is 
sufficiently slender, the Bow field in a plane a t  right angles 
to the body axis corresponds to that around a circular 
cylinder in a uniform stream of velocity, V sin aB. This 
gives an upwash field in the horizontal plane of symmetry 
of the body of 

(1) 
The effect of this upwash on the wing can be obtained by 
considering the wing to be a t  angle of attack and twisted 
according to equation ( I )  and by applying the formulas of 
supersonic wing theory. The wing pressure field SO obtained 
is exact, within the limitations of the theory, for that section 
of the wing outboard of the hfach line emanating from the 
leading edge of the wing-body juncture. If the wing is 
located close to the body nose so that there is a chordwise 
variation in tlie upwasli field due to the body, then the wing 
is effectively cambered, and the solution is more difficult. 
However, for most wing-body combinations it is possible to 
disregard the effect of the nose, and to  assume that the wing 
is attached to a circular cylinder that extends upstream 
indefinitely. 

Mutual effects between body and wing.-The mutual 
interference between the body and wing on the winged part 
of a combination causes an interference field acting on the 
body and on the wing inboard of the Mach line emanating 
from the leading edge of the wing-body juncture. The 
wing-alone flow field docs not, in general, produce flow 
tangential to the position to be occupied by the body sur- 
face. An interference flow field must arise that cancels the 
velocity induced by the wing-alone flow field normal to the 
body while not changing the wing shape. Altcmatcly, the 
origin of the interference field can bc explained in the follow- 
ing manner. The wing and body can be thought of as 
sources of pressure disturbances that radiate in all direc- 
tions in dowiistrcam Mach concs. The wing disturbances 
which radiate toward the body arc, in part, rc4cc:tcd back 
by the body onto the wing arid in part transmitted onto the 
body giving rise to interference pressures. likewise, tlic 
disturbances originating on the body pass onto the wing arid 
affect the prcssures there. I t  is apparent that the dctermi- 
nation of the interference pressure field on the body and on 
the wing inboard of the Mach line of the juncture is the crux 
of the wing-body in terference problem. 

Mutual effects between wing panels.-To dctcrniine the 
region of influence of one wing panel on anothcr, it is neccs- 
sary to trace the path of a pulse from one wing panel across 
the body onto the other. The path traced across the body 
by the pulse originating at the leading edge of tho  wing-body 
juncture is the forward boundary of the region of influence of 
one wing panel on the body. I t  is clcarly the 
helix intersecting all parallel elcmcnts of the cylinder at the 
h h c h  angle. The boundary crosses the top of the body a 
distance of S J M Z - -  1 downstream and reaches the opposite 

wing-body juncture a distance 7ra\M -1 downstream. A 

(Tu= cyB (1 + a2//y') 

(SCC fig. 1.) 

1 - 7 -  
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pulse originating at  a point on one wing panel and traveliug 
to a point on the other panel can travel around the body on 
its surface to the opposite juncture and then along the wing 
to a given point, or it can leave the body tangentially before 
reaching the opposite wing juncture in a straight path to the 
point. The second means of transmitting the impulse is 
shorter in distance than the first and is the one which 
determines the forward boundary of the region of influence 
of one wing panel on the other. Applying this consideration 
to the pulse originating at  the leading edge of one wing-body 
juncture, it is easy to show that the forward boundary of the 
region of inhence of one wing panel on the opposite wing 
panel is given by the equation 

This boundary is also shown in figure 1, and it becomes 
parallel to the h4ach line at  distances far from the body. 

Effects on the afterbody.-As far as the interference 
effect of the body on the wing is concerned, i t  is confined to 
the winged part of the combination, but the effect of the wing 
on the body is felt also on the afterbody. For a sUmet r i ca l  
configuration at zero angle of attack there is no downwash in 
the horizontal plane of symmetry and the afterbody presents 
no particular problem. However, behind B lifting wing there 
is a downwash field. If the downwash were known every- 
where in the wing wake, then the wake could be considered as 
an extension of the wing with twist and camber. The wing 
wake and afterbody could then be incorporated with the 
winged part of the combination and treated in the same 
manner. However, the actual downwash pattern in the 
wing wake depends on the interference effect of the body on 
the wing. It is thus apparent that the solution of the after- 
body problem requires that the interference problem for the 
winged part of the combination be solved first. Only the 
winged part of the combination is analyzed in detail in this 
report. 

Regions of applicability of the theory.-The present 
interference theory can be applied to all or part of a wing- 
body combination depending on the configuration and the 
lift. If the combination is not lifting and possesses a hori- 
zontal plane of symmetry, then the interference pressure 
field can be determined for the entire combination. For B 

lifting combination with subsonic leading edges the upwash 
field in front of the wing makes the present method in- 
applicable. 

For a lifting combination with supersonic leading edges 
several geometric factors considerably influence the difficulty 
of calculating the interference field or indeed the csterit to 
which it can be calculated. The effect of one of these factors, 
the sweep of the trailing edge, is illustrated in figure 2 (a). 
A subsonic trailing edge gives rise to multiple AIach wave 
reflections which greatly complicate the determination of 
the interference field over the rear part of the wing. Another 
important effect limiting the applicability of the tlieorj- is 
illustrated in figure 2 (b). This figure indicates that tlic 
interference field behind the incident ware can influcnce the 
tip upwash field which, in turn, influences the pressure field 
behind the reflected wave from the tip in a complicated way. 

,) Subsonic trailing edge. 
) Simple case. 

7 
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the wing can be treated as equivalent to a change in thick- 
ness distribution. The rectangular wing of aspect ratio 
greater than two is an example of the simple case, and it 
will be treated as an illustrative example in this paper. 

An example of a tractable although fairly complicated 
case to which the present theory can be directed is shown in 
figure 2 (d). In  region A the pressure field is determined 
as a pure wing-alone problem with any body upwash being 
treated as equivalent to a change in thickness distribution. 
In region B the problem is still a wing-alone problem which 
is complicated by upwash outboard of the tip. In region 
C there are body interference effects but no tip effects. 
In  region D both effects prevail. In region E the tip has 
influenced the flow at the body surface and produced a 
secondary effect on the interference pressure field. 

MATHEMATICAL FORMULATION OF PROBLEM 

Throughout the analysis, the body radius is taken as unity 
and M z  is taken as 2 so that p=1. Any formula can be 
generalized to any body radius by dividing all length symbols 
by a, and to any Mach number by dividing all st,reamv-ise 
lengths by p, by multiplying all pressure and lift coefficients 
by 8, and leaving d l  potentials, l i f t  forces, and span loading 
unaltered. I t  is necessary to specify the wing alone before 
any detailed interference calculation can be carried out. 
However, in the theoretical solution of the problem the 
wing-alone definition is arbitrary. The flow field about 
the combination does not depend on the definition of the 
wing alone. 
General decomposition of boundary-value problem.- 

The general case of a combination at  angle of attack with 
the wing at incidence as shown in figure 3 is considered. 
The mathematical details of the decomposition of this 
configuration into tractable configurations is carried out in 
detail in Appendix A following the suggestions in reference 
15. A simplified discussion of the decomposition is now 
presented. The complete combination can be decomposed 
into three component configurations as shown in figure 4 (a) 
in which the wing boundary conditions are to be applied 
in the z=O plane and the body conditions on the r=I 

v Y 

Z U  

I 
T 

FIGURE 3.-General eombination under combined effects of angle of 
attack and wing incidence. 

cylinder. Component (1) is simply the body alone, which 
creates an upwash field a, in that region to be occupied 
by the wing in accordance with equation (1). Components 
(2) and (3) are combinations with wings of the same plan 
form; but while component (2) has a wing at angle of attack 
iw, component (3) has a wing with angle of attack -a,. 
The significance of this particular method of decomposing 
the general wing-body problem is that component (l), the 
body alone, can be solved by known methods and com- 
ponents (2) and (3) with bodies a t  zero angle of attack 
can be solved by the methods of this report. In  the wing- 
incidence case where aB=O, only configuration (2) remains. 
This configuration can be decomposed into a wing-alone 
problem and a distorted-body problem as shown in figure 
4 (b). We confine our attention to this wing-incidence 
case for the time being. 

Y 

x 

(a) Decomposition of general wing-body combination. 
(b) Decomposition for wing-incidence case. 

FIGURE 4.-Decomposition of wing-body combinstions into simpler 
combinations. 

Consider now a combination with the body at  zero angle 
of attack and let cpc be it,s potential. (See fig. 4(b).) This 
potential can be considered t,he sum of a wing-alone po- 
tential cpw and of an interference potential p. 

cpc= cpw + cp (3) 
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Since the bod?- is an infinite circular cylinder a t  zero angle of 
attack, it produces 110 flom field. If the body were quasi- 
ryliudrical with small distortions, a potential due to the 
hody could be included in equation (3). If the body has a 
horizontal plane of sjmmetry, the inclusion of a potential 
due to bod?- distortion will not change the interference 
potential. 

First, select a 
c*onvenieiit wa?; of esteiiding the wing through the bodv to 
form the wing alone, thereby specifying (pw. The wing-alone 

flow field in  geiieral protiuces velocities normal to the dr 
surface that will eiiclose the circular cylinder as illustrated 
in figure 4(b) for the region above the wing. In  figure 4(b) 
and subsequelit figures, all bodies are shown as cylinders 
j~~ra l l e l  to tlie s axis. While the bodies of the component 
c~onfiguratioiis in somc cases are slightl3- distorted cylinders, 
they are ~it~vertheless slio~vn as true cylinders. This pro- 
retlure is compatible with the fact that the boundar>- con- 
ditions HIY to be applied on a truc (.?-linder. The value of 

varies wit11 e a n d  u-it11 s. This means that a body con- bcpu 
Br 

forming to the iiig-aloiic. flow field is distorted in a compli- 
cated fashion. Sow since the body must be circular, there 
must arise aii iiitrrferenc.e potential cp that identically cancels 
bPW' -- :it the hod>- surfaw. thereby straightening i t .  br 

The essential problem is to determine (p. 

-_ 

a t  r= l  3- bcpw _-- 
br br (4) 

ri'li(w~ are t IVO other coliditions to be fulfilled by cp. It must 
riot distort the shape of the wing whtw added to cpli7 to pro- 
d ~ ( . ( $  cpc. r r~ lus  n-hrll e=o, 

or ;,.=O for t l i c  intc~rfciyilce combination as sliown in figure 
4 ( M .  Thc1 last coliclition is that the interfereiice potential 
must h t ~  mro ahead of the winged part of the combination. 

cp=o, x i 0  (6) 

Equations ( 3 ) ,  ( 5 ) ,  a i d  (6) are the cssential boundary con- 
ditions 011 cp. 

T h  normal relocity - dcp to be induced at the body surface 
b r  

hy the interference potential can be analyzed a t  any given 
strcamwise position as a Fourier cosine series. The ampli- 
t udes of the various Fourier cosine terms,f,, (z), vary with 2, 
the streamwise distance. Thus, 

(7) 

Oii1~- even multiples of e are considered because of the vertical 
plane of symmetrj-. Consider that the interference PO- 
tential is decomposed into a series of potentials such that 
each cancels one Fourier component of the velocity a t  the 
h i y  surface; that is, 

m 

CP=X p2n (8) 
n=o 

with 

(9) 

Then the combination giving the interference potential cp can 
be decomposed in a series of combinations, each giving one of 
the \dues. The decomposition is illustrated in figure 5. 

FIGCRE 3.--T~econipositioii of interference coinbination iiito series of 
Fourier conipoitc~ri t iitterfereiire conibiriations. 

and there is 1 1 0  variation of the normal velocity, pressure, or 
potential with 8. Thus the first interference combination is 
a body of revolution. The pressure field acting on the body 
of such a combination can be determined by the method of 
reference 16. This n=O interference combination has the 
very simple significance that its flow normal to the r= 1 cyl- 

acp inder, %, subtracted from - reduces the flow across t,he br b r  
body to zero when averaged from e=o  to  e=?r at, any stream- 
wise locat ion. For n = 1, 

and the iioimal velocity, pressure, and potential will vary as 

To summarize briefly, it has been shown that the geiieral 
interfereiire problem of a body and wing at different angles 
of attack can be broke11 down into wing-body problems with 
bodies at zero angle of attack as shown in figure 4 (a). 
Combinations with tlie body at zero angle of at-tack are 
decomposed into wings alone plus interference combinations 
as in figure 4 (b). The intcrfcrence combinations are finally 
decomposed into their Fourier components as in figure 5 .  

A general method for determining the c.11aracteristics of 
any Fourier component will now be given. It will be shown 
that good accuracy can be obtained for the interference 
potential with few Fourier components. 

COS 28. 

SOLUTION BY METHOD OF W FUNCTIONS 

The problem to be solved is that of a supersoitic wing arid 
body combination subject to the conditions already men- 
tioned, but with the wing and body possibly at different 
angles of attack. This problem is reduced to a body-alone 
problem and two wing-body problems with the body at zero 
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angle of attack as shown in figure 4 (a). The body-alone 
problem can be solved by existing methods such as references 
8 and 14. The procedure necessary to solve either wing-body 
problem as given in reference 7 is now summarized together 
with recent improvements. 

The potentials cpc, cpw, and cp must all fulfill the equation of 
linearized compressible flow 

(MZ-1)Pz2-cpw-- cprr=O (10) 

If we restrict ourselves for the time being to the case A4= 8 
and transform equation (10) to polar coordinates, we have 

with the coordinate system of figure 1. I n  solving the prob- 
lem we change from the physical space, 2, T ,  e, to the trans- 
formed space, s, r,  8, by means of the Laplace transformation 

With the boundary condition given by equation (6) that cp is 
zero for 250, equation (11) can be transformed to 

(13) 
1 1 
T T  

a,,+- ar+2 ae*-s2a=o 

Expanding @ in a cosine series of multiples of 8, we can 
satisfy the boundary conditions given by equation (5 ) ,  and 
since there is a vertical plane of symmetry, we can confine 
ourselves to even multiples of e. With this restriction, gen- 
eral solutions to equation (13) can be written 

where I Z n ( s ~ )  and KZn(sr) are modified Bessel functions. 
The constants Czn(s) and DZA(s) are arbitrary functions of s. 
The functions Izn(sr) can logically be eliminated at this point 
since from their asymptotic forms they can be shown to 
represent waves traveling upstream. The function Czn(s) 
can be evaluated by means of the remaining boundary con- 
dition given by equation (7). If we let 

=L If2 n(z)1 
then 

We t'hen as the operational solution to our prot.2m 

The solution can be split into the product of two trans- 
forms, one dependent on the particular boundary conditions 
as represented by the Fzn(s) functions and another part 

* The condition frequently stated in deriving equation (131, that +*=O for z=P, is not 
required as proven in referen@ (17). This is in accord with the intuitive physical idea that 
sny step in +. at the origin can be replaeed by a continuow curve which for engineering 
purposes can have an effect different from that of the step only i~ a limited local region. 

independent of the boundary conditions. The inverse 
transform of the product of the two transforms can then be 
determined by the convolution integral. The part of the 
transform independent of the boundary condition can be 
thought of as defining a set of characteristic functions or 
influence coefficients. A tabulation of these functions allows 
a numerical solution of the problem for all boundary con- 
ditions. 

The manner of splitting equation (17) into two transforms 
depends also on the existence of the inverse transforms of 
the parts into which it is split. Let us write equation (17) as 

Wit,h the aid of the following relationships 

L-l[Fzn(s)e-a(r-l)] =j&-r+ 1) 

L-'(s*)=(P, 

and the definition of the characteristic functions 

we obtain 

(22) 

With the aid of the W z n ( ~ , r )  functions, the value of pz, and 
hence the pressure or potential anywhere, can be calculated 
from equation (22) by numerical integration for as many 
harmonics as desired. This result was previously given (refs. 
7 and 10) for the ~ = l  case only as 

and the U;,(x) functions were tabulated for numerical cal- 
culation of the body pressure distributions only. The gen- 
eralization of the W2,(z) function to UTzn(z, r )  functions by 
means of equation (21) is a natural extension that permits 
the simple calculation of the pressure anywhere in the flow 
field. Some mathematical properties of Lt>n(.r, r )  functions 
and methods for their evaluation by automatic computing 
machinery have been studied by Dr. W. Mersman of the 
NACA. A resume of his results is reported in reference 18. 

Properties of the Wzn (x,r) functions.-Two important 
properties of the TV*,(r, r )  functions that make them useful 
for numerical work are that they possess no singularities in 
the field and their magnitudes never become large. These 
advantages are in distinct, contrast to several disadvantages 
of the multipole method subsequently to be described. 
Curves of the Urzn(r, r )  function are presented in chart 1 for 
n=o, 1, 2, and 3 for use in numerical computations. 
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A simple physical picture of the U;,(z, r )  functions can be 
Write the interference pres- obtained from equation ( 2 2 ) .  

sure coefficient due to any harmonic as 

Let the velocity amplitude function be a delta function a t  
the origin as shown in figure 6. Then 

FIGURE B.-Fourier coinpment interference combination with "delta 
function" protuberence at z=O. 

I t  is seen t,hat physically the VZn(z, r )  function represents 
t.he pressure field due to a delta function in the velocity 
amplitude function. The first term represents an infinite 
pulse propagated along the Mach cone with apex at z= - 1 
and attenuating inversely as &. The Wz,,(z-r+l, r )  term 
represents the overexpansion behind the bump where the 
pressure would be zero if the flow were two-dimensional. 

Formulas for the WZn(z, r )  functions for small z and large 
z can be obtained from Laplace transform theory. I n  fact 
these results are 

~ 

8 The equation for pressure coefacient to be used with equation (23) can on theoretical 
grouads be changed in going from the wing to the body of the configuration as discussed in 
reference 11. However, for simplicity, the linearized form of the Bernoulli equation is retsined 
throughout the theoretical caleulations. The contribution of the quadratic terms to the 
body pressure m5cient  is subsequently discussed for tbe case of the combination at angle 
of attack. 

It should be noted that the value of IV2,(O, r )  is known 
precisely. 

SOLUTION BY METHOD OF MULTIPOLES 

Multipole types.-In references 7 and 10 a multipole 
method was used to determine the pressure field off the body. 
The singularities arising in this method, together with the 
loss of accure-y for the higher harmonics due to large numbers, 
led to the development of the Wzn(z, r )  method just de- 
scribed. Since the multipole method has application to 
certain problems and since its connection to the TtT2,Cx, r )  
method is of interest, it will be given here. I n  the WZn(z,  r )  
method the pressure field is determined by using boundary 
conditions on the body surface and continuing the pressure 
field outward from the body. I t  is intuitively obvious that 
any quasi-cylindrical flow can be generated by dktributing 
sources and multipoles along the body axis in variable 
strength. If the strength of the axial multipole distributions 
can be related to the body shape (velocity amplitude func- 
tions), then the entire flow field can be calculated outward 
from the axis. 

Consider equation (14) which, with DZn(s) equal to zero, is 

This equation can be interpreted to mean that the poten- 
tial is built up from a dist<ribution of multipoles corresponding 
to the inverse transform of cos 2n0K2,(sr) along the z axis 
in strength ezn(z). However, there are many possible sets 
of multipoles corresponding to 1 integrals or derivat,ives of 
the set just mentioned. These are generated simply by 
rewriting equation (30)  as 

n=O S 

The first term represents the axial strength function, and the 
second term represents the fundamental multipole solutions. 
For each value of the index m there is obtained a distinct set, 
of multipole solutions. For selected values of m the multi- 
poles have the following forms: 
m=O 

= O ;  
m = 2 n  
cos 2 n e ~ - 1  [%zF]=cos 2ne (2  2. ' 2 2n 

(411) ! ( T )  



~~~ ~~ _ _ ~ -  ~ 

QUASI-CYLINDRICAL THEORY O F  WINGBODY INTERFERENCE AT SUPERSONIC SPEEDS 9 

For positive values of m it is clear that at the Mach cone 
( x =  r )  no nonintegrable singularities occur. For negative 
values of m, derivatives of the m=O multipoles are en- 
rountered and the singularities occur on the Mach cone 
rather than on the axis. Since these singularities occur in 
the flow field, they are not well suited to numerical methods 
of analysis. Another set of simple multipoles with singulari- 
ties on the Mach cone are those of reference 19 given by 

13nCQs 2nB 
( 9 4 )  m + l / z  

Multipole strengths.-The first step in determining the 
interference potential by the method of multipoles is to 
determine the multipole strength from the velocity amplitude 
functions. For the m=O set of multipoles the relationship 
between these two quantities is already given by equation 
(16) 

(33) 

If the potential at  a point P as shown in figure 7 is desired, 
the 

Y, 2 

t 

FIGURE 7.-General point at  which potential is to be determined. 

multipoles must be distributed from -1 to 2--T along the 
body axis. Since Laplace transforms must be zero for 
2 5 0 ,  the axial distribution must be shifted a distance at  
least unity to the right by introducing e-' into tlne transform 

(34) 

Equation (34) defines R Faltung integral involving a new set 
of characteristic functions given by 

T I T  

(35) 

These characteristic functions have been studied in reference 
7, are tabulated in table I, and are plotted in +re 8. 
Forming now the 

I 

0 5 1'0 I.\ 2b 25 i o  3.5 4.0 
X 

FIGUFW 8.-Graphical representation of Mz,(z) functions. 

Faltung integral of equation (34) we obtain 

~ z n  (2- 1) = f2n (6) M z n  (2- 8 d€ (36) 1 
The function MZn(x) has a square-root singuhritp a t  the 
origin so that cZn(z- 1) will be finite if f2n(z) is finite. How- 
ever, f2"(z) may have a singularity which in confluence with 
the square-root singulaxity of MZn(x) produces a Singularity 
in cZ.(r-l). 

Increasing the index m by unity has the effect of integrating 
the set of multipoles witb respect to z and of differentiating 
the axial strengtb functions by x. While this decreases the 
order of the singularities of the multipole solutions, it in- 
creases the order of the singularities of t,he axial strength 
functions. The highest index m that does not lead to singu- 
larities thus depends on how many nonsingular derivatives 
cZn(z- 1) possesses, which, in turn, depends on the smoothness 
of fzn(z). In  the calculations for the wing-incidence case 
(ref. 7) f2;(z) has a square-root aingularity at  z=1 so that 
cZn'(x- 1) has a logarithmic singularity. Since ~ ~ ( 5 -  1) 
corresponds to m=O, it was possible to use multipole solu- 
tions of the m=l  class and still obtain integrable singular- 
ities in the axial strength functions. 

Properties of the MZn(x,r) functions.-The M2,,(z,r) 
functions have simple physical significance. Let the velocity 
amplitude function be that corresponding to a delta function 
as shown in figure 6. Then by equation (36) 

Gn(z-1) =Mzn(z) 

Thus the MZn(z) function represents the distribution along 
the axis of multipole strength for the m=O set of multipoles 
necessary to make the velocity amplitude function a delta 
function. Correspondingly, it is the distribution necessary 
to produce a pressure field corresponding to the U7zn(x-r+ 1 ,r) 
function. Equations (25) and (30) yield the relationship 
between the WZn(z,r) and MZn(z) functions. 

z>r-1 (37) 

Series for the MZn(z) functions for small and large values 
of the argument have been obtained by the standard methods 
of Laplace transform theory in reference 7 

The square-root singularity of MZn(x)  a t  the origin is note- 
worthy. For the asymptotic result only a single term has 
been calculated 

1 
9 (3 9) M, (z) - -- 
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Span loading and pressure coefficient.-From equation 
(31) the potential can be written 

so that 

I C ~ , , ( X - ~ - E )  cash 
e 

, I r - I  1 (t+ I)*-? 
p=x COS 2 7 ) ~  - ~.~ 

From this result the potential can readily be obtained and 
hence the span loading. The pressure coefficient follows 
directly from equation (42) using the linearized form of 
Bernoulli's equation 

n=o 

(4 3) 2 p=--- 1' PI 
Thus 

2 2  

U J,-l dr 
The practicabilitJ- of using this rcsult for calculating the 
pressures depends in the first place on the accuracy with 

which ~ ~ ~ ~ ( 2 - 1  --l) can be calculated. Since this calcula- 

tion depends on the -1J2n(~ )  functions, which are tabulated 
at the present time onlJ- to the third decimal place, only 
three significant figures will usuallj- be obtained for the axial 
strength functions. For higlicr liarmonics and large values 
of X ,  loss of occurac*y is incurre(1 through the nature of the 
multipole solutions tIicmsclvcs. Thc following tahulation 
illustrates the point. 

b 
b G  

(.OS11 ( 2 n  cos11 -1s) 

1 1 1 
97 1 .  350 - 1 I 

2 1 
3 1 1; 580 19, GOO 
4 1 3 1 1920 119,000 

gularities are tractable using the methods of analysis, the7 
are not adapted to the numerical methods used hrrein. The 
method utilizing the W2n(x,r)  function avoids difficulties 
with large numbers and with singularities. 

11. APPLICATION OF THEORY TO COMBINATION OF 
CIRCULAR BODY AND RECTANGULAR WING 

In this part of ttie report calculations are carried out to  
determine the pressure field acting on a wing-bod- combina- 
tion employing a rectangular wing with no thickness. The 
calculations are first made for the body at zero angle of attack 
with the wing at incidence-the wing-incidence case. The 
calculations are then made for the bod>- at angle of attack 
with the wing at zero angle of incidence-the angle-of-attack 
case. For the calculations attention is focused on the upper 
half of the combination since the experimental measurements 
were made for the upper half. 

WING-INCIDENCE CASE 

The complete pressure field will now be calculated. A s  
previously mentioned, ttie wing alone can be specified in 
any convenient manner and, for the purpose of the example, 
the wing alone is taken as the rectangular wing extending 
straight through the body from side to side. Although the 
analysis as carried out is for M=,%, the results are pre- 
sented in a form applicable to a range of Mach numbers. 
The steps in performing the calculation are: (1) to determine 
piv, the wing-alone potential; ( 2 )  to determine the velocity 
amplitude functions, j22n(z)  ; and (3) to determine the 
potential or pressure, as desired, anywhere in the field. X o  
tip effects are considered until the results we presented as a 
function of wing aspect ratio. 

Wing-alone potential.-The wing-alone flow, exclusive 
of tip effects, can be determined from the Ackeret theory. 
The flow at a spanwise station out of the region of influence 
of the wing tips is illustrated in figure 9. The potential for 
the flow above the wing is 

cpw=lrx when z 2 x  (45) 

cpW=T;r+i,V(x-z) when z 5 - c  (46) 

bPw 
@4 

The sidewash produced by such a potential -- is zero, and 

. 

\ \ '. 
\ 

\ 

FIGURE 9.-E'lo\v field producc:d by wing alone. 



2 cos (2n-l)w 2 cos (2n+l)w - ~ _ _  - ~ -  
2n+ 1 
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FICL-RE 10.--Variztion of normal velocity induced at body surface by 
wing alone; unit bcdy radius; wing-incidence case. 

6 -  

4 -  0'1 

L *  I I ,  A- 1 8 -II- 

0 2 4 6 8 I O  1.2 
X 

FIQURE 1 l.-Graphical representation of velocity amplitude functions; 
wing-inciderice case. 

bPW 
b z  the downwash __-  is uniformly -iwV. Thc. dowiiwtLsli 

causes a flow normal to the surfacc r = l  in amount -iwV 
sin e. This means that, for a body conforming to thr wing- 
along flow, the deformation is zero a t  the wing-body junc- 
tures and a maximum on thc top of the body. The intcr- 
fercrice combinations when added to the deformed body 
straightcri it out Fourier componcnt by Fourier component. 

Fourier amplitudes of body normal velocity.--The Fourier 
amplitudrs of tlic normal velocity induced by thr wing-alone 

a t  dPW potential t i t  the body are dctermined by expanding __ br 
r = l  ill IL Fouricr cosiiie scrics of even multiplrs of 8. The 
normal vrlocity distribution is shown in  figure 10. For 
z 2 1 t l i t  hody is totally immersed in thc wiiig downwash 
field. Witli the usual equation for obtaining the Fourier 
amplitutlcs of II function, tlicre is obtainrd 

Thc intcgrntiorls givc 

m] wlieii s l l  (51) 

where w=sin-'.r. Thcf,,(s) functions are shown in figure 11. 
The constant values of fZn(.r)  for 221 are noteworthy. 
The values off2,(%) are tabulated in table 11. 

Interference pressure distributions.-The interference 
pressure distributions have been calculated for the first 
four Fourier components and are presented in figure 12. 
In this figure the abscissa is proportional to distance behind 
the Mach linc originating a t  the leading edge of the juncture, 
as illustrated in part (a) of the figure. Although the calcula- 
tions have been carried out for M=&, that is, 8=1, and 
for unit radius, they are generalized to all Mach numbers 

and body radii by replacing 2-rfl  by ---+1 and Pzn by 

or,, as has been done in the figure. From the figure it is 
apparent that the cusps in the pressure distributions are 

propagated downstream along lines of constant ---+I or 

2-pr; that is, along thc dowristream characteristics. As 
the prrssure distributions move outward from the body 
along the downstream charactrristics, they are distorted 
arid decreased in magnitude. 

Iiicrcasiiig the order of the Fourier harmonics causes two 
important effccts: first, the number of points of zero pressure 
is increased and, second, thc pressure coefficient damps 
more rapidly. As a result of the first effect, the contribu- 
tions of the higher harmonics to the combination span 
loading are proportionally less than their contributions to 
the pressure coefficient; while, as a result of the second 
effect, the more remote a point is from the leading edge of 
the wingbody juncture, the fewer thc number of Fourier 
components that must be included to obtain its pressure 
coefficient accurately. All interfwencc pressure distributions 

exhibit discontinuities in slop(' a t  ----+I = I .  This be- 

havior is a coimqueiice of the fact that thc body becomes 
totally immersed in the wing-alone flow field for this condi- 
tion. When the pressure distributions of the various Fourier 
comporicrits are added together to obtain the interference 
pressurcb distributions, the discontinuities in slope tend to 
cancel so that the pressure dist ributioii for the combination 
will bc smoo t 11. 

A det ailed c\xamination of the interfercrlcc pressure dis- 
tribution for t h e  first Fourier component illustrates scvcral 
points of intchrrst . The importarice of the compon(~rit arises 
from thc fact that it accounts for most of thc cffrot of inter- 
ferencc on thc span loading. The reason for this is that the 
pressure coefficients for n=O are of invariable sign. The 
effect of the first Fourier ,component is to reduce the velocity 
induced normal to the body by the wing-alone flow field to 
zero averaged around the body from e = O  to e= T at anystream- 
wise location. 

x r  
@a a 

x r  
Pa a 

x r  
Pa a 
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(a) n=O 
(b) n=l  

FIGURE 12.-Interference pressure distributions of various Fourier components; wing-incidence case. 
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For purposes of comparison with the exact results for 
n=O, some approximate results have been included in 

figure 12 (a). For values of 2 < 1  on the body, the Ackeret 
Ba 

value of Po (twice the local stream angle divided by B )  is a 
close approximation to the true pressure coefficient. This 
is the result of the facts that the part of the body affecting 
the interference is effectively plane for points near the lead- 
ing edge of the wing-body juncture and that there is no 
variation of any quantities with e so that an approximate 

two-dimensional situation prevails. As - increases beyond 

unity on the body, there is a rapid decrease in the pressure 
coefficient below the Ackeret value due to the effect of all 
disturbances in front of the point in question as represented 
by the integral of equation (24). 

In reference 7, the following approximata results were 

obtained for small and large values of ;-&+I for the pres- 
sure coefficient : 

2 

Ba 

x r  
B 

x r  
Ba a 

&s --- +1+0 

X 
a s - + m  

Ba 
x r  
Ba a 

For ---+I 5 0 . 6  equation (53) is a good approximation for 

n=O although it is of little value for higher-order harmonics. 
There is a general tendency of Po to approach a uniform value 

independent of r as ---+I becomes large, as shown by 

equation (54). The damping in the characteristic direction, 
although initially inversely proportional to the square root 
of r ,  is ultimately independent of r. 

Pressure distribution in juncture of wing-body combinn- 
tion.-By adding the interference pressure coefficients of 
the various Fourier components to that for the wing alone, 
the pressure distribution for the combination is obtained. 
The addition has been carried out for the wing-body juncture 
using four Fourier components and six Fourier components, 
and the results are presented in figure 13. The pressure 
coefficient with interference is less in magnitude than 2, the 
value without interference, showing that significant losses of 
lift occur in the wing-body juncture. A comparison of th; 
results for four components and six components shows that 
four components give good over-all accuracy for all values of 

- greater than 1. For small values of 2 in the wing-body 
Ba Ba 
juncture, the curvature of the body insofar as the flow is 

x r  
Ba a 

X 

- Bf 
’W 

- 2.0 I I 1 
,---Four Fourier components  

L i - S i x  Fourier components  I I 1 
- I  .6 

- I  .2 

-.8 

x/po 

FIGURE 13.-Theoretical pressure distribution at wing-body juncture 
of combination using four and six Fourier components; wing- 
incidence case. 

concerned is not large so that the body is effectively a vertical 
boundary on which a given distribution of normal velocity 
is producing an interference field. Supersonic wing theory 
applied to this condition gives for the net interference pres- 
sure coef€icien t (ref. 7). 

Bp +- 42 when z-4 
iw 3rBa Ba (55) 

I t  is clear that the calculated results can be jointed smoothly 
to this result. Using the result of equation (55) enables 
satisfactory results to be obtained with four Fourier com- 
ponents. 

The critical region in the convergence of the solution is 
that near the leading edge of the wing-body juncture. The  
higher harmonics have their most important effect near here 
and rapidly damp downstream along the body. Hence more 
and more Fourier components would be required to get. 

accuracy for smaller and smaller values of -. However, 

with the result of equation (55), this extra work is unneces- 
sary. 

One point of interest in figure 13 is the fact that when - 
BCG 

equals approximately 3, the pressure coefficient increases in 

magnitude. This is due to the fact that for z> r the influ- 

ence of the opposite half-wing is felt in the wing-body 
juncture. 

Pressure distribution on top meridian of wing-body 
combination.-The pressure distribution on the top meridian 
of the wing-body combination is obtained in the same fashion 
as that at the wing-body juncture, the difference being that. 
the pressures due to the even number Fourier components 
have the same sign at the meridian as a t  the juncture, whereas 
the odd numbered components have reversed signs. The  
pressure distributions based on four and six Fourier com- 
ponents are shown in figure 14. 

Several interesting effects are exhibited by the results, 

The step in the wing-alone pressure at  -=1 is effectively 

canceled by the interference pressures of the Fourier com- 

X 

Ba 

r 

Ba - 

2 

Ba 
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x/po 

FIGURE 14.-Theoretical pressure distribution on top of combination 
using four and six Fourier components; wing-incidence case. 

2 X X ponents from --=I to - = ~ / 2 ,  and for -->n/2 the pressure 

increases rapidly and tends toward the two-dimensional 
value. The effect of the interference pressure in canceling 
the effect of the wing alone on the top of the body from 

--=I to - = ~ / 2  is to be expected since the wing of the 
Ba Ba 
combination can have no effect on the top of the body unless 

- > ~ / 2 ,  as has been already pointed out. If an infinite 
Pa - 
number of Fourier components had bcen taken, the pressure 

coefficients would be identically zero from -=0 to --=7r12. 

The general behavior in this regard is evidence of the plausi- 
bility of the calculated results. 

The tendency of the pressures to approach an asymptotic 
value is also illustrated by figure 14. This asymptotic 
value represented by the sum of the wing-alone pressure plus 
the asymptotic results for the first Fourier component is 
given by the following equation : 

Ba Ba Ba 

2 X 

2 

X X 

Ba Ba 

X For ~ >2.4, the results of this equation are in good 

agreement with the results of figure 14. 
Some evidence is furnished from the pressure calculations 

for the juncture and top of the body concerning tllc number 
of Fourier components necessary for ac.cwra.c*y. Comparisons 
made in figures 13 and 14 show that about four components 
are sufficiciit and that the addition of two more is not worth 
the extra work. 

Pressure distribution on wing of wing-body combination,- 
The distribution of t k c  prcss~rc. nctirig on tlre wing of the 
combiriat ion eun be dctcrminc~cl i n  IL muiiiivr similnr to that 
for the wing-body junc-t urc by ddiiig to tllch wing-alone 
pressure those due to the Fourier cornpoli(~1its. The result- 
ant pressure distribution for the wing based on four Fourier 

components is shown in figure 15. For small values of - 
Ba 

the higher-order oscillations in the pressure coefficient as 
shown in figure 13 have becri ignored, and the curves have 
been faircd tlirougli them. 

Ba 

X 

x /pa 

FIGURE 15.-Theoretical pressure distribution acting on wing of 
combination; wing-incidence case. 

Since the region of influence of the body on tbe wing is 
confined to the wing region downstream of the l l a c h  lines 
emanating from the leading edge of the juncture, in front 
of this line the pressures are uniform a t  the two-dimensional 
value, and behind the line there is a decrease in the magnitude 
of the pressure coefficient. If the body were a perfect 
reflector, that is, a vertical wall of infinite extent, then 
there would be 110 pressure loss. However, the pressure 
pulses originating on the wing are only in part reflected by 
the circular body. The efficiency of the body as a reflector 
is discussed subsequently in connection with span loading. 
The tendericy of the pressure to increase in magnitude near 
the inboard trailing edge is due to the effect of the opposite 
wing panel which a t  the wing juncture is felt downstream 

of the point -=K. 

Span loading.-The span load distributions for a iange of 
rectangular wing-body combinations with the body a t  zero 
angle of attack can be determined from the pressure distri- 
butions of figures 13, 14, and 15. Since the pressure dis- 
tributions of figure 15 are in a form independent of 1Iach 
number, it is convenient to define a span loading wliicli is 
an integral of these distributions. 

2 

Ba 

- 2P =‘J’+’ a - -J  [;l(-i.) d X ]  dy ( s i )  

The cliiaritity in the square brackets is tnlwli to bc 1111’ s1mi 
loading. If all distaiiccs are taken ill units of tllc body 
radius, then “a” can be set cquul to unity i i i  t l i c  formult~s. 

Tlic prc~ssurr results of figure 15 arc for vuluc~s of thc c x f f c c -  
tivc chord-radius ratio of 4 or less and for vii1rlr.s of the 
effective aspect ratio of 2 or greater. S p i ~ i  loadings for 

any combination of - (or c * )  and @A i n  thcsc ranges can be 

obtairicd by integrating the pressure distributions. The 
span loading evaluations have been made for c*=4 and 
BA>2. First the span loadings due to the vwious Fourier 

C 

Ba 
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iscussed, and then the span loadings for 
the actual wing-body combinations are presented. 

I n  figure 16, the contributions to the span loading for the 
h t  three Fourier components are shown. For n=O the 
pressure field does not depend on 8, being axially symmetric, 
and a constant loading exists on the body. However, on 
the wing as the spanwise distance increases there is B decrease 
in the span loading, due primarily to decrease in the length 
of chord over which the interference pressures act. The 
span loading due to the first Fourier component causes a 

, 

1 

loss of lif t  everywhere along the span. 

1.6- 

Y / a  

FIGURE 16.-Theoretical span loading of vsrious Fourier components 
acting on combination of body and rectangular wing having effective 
chord-radius ratio of 4; wing-incideiice case. 

A comparison of the results of figure 16 for n=O and n = l  
shows that the first Fourier component accounts almost 
entirely for the effect of intrrfcrence on the span loading of 
the combination. For the body this fact is even more true 
than for the wing. This fact is of coiisiderable importance 
since it gives a simple meaiis of extending the lift and moment 
results to larger values of -- than those for w-liich the pressurr 
distributions have been calculated. Also, it suggests a simple 
means of minimizing thc adverse effects of interference on 
lift as will subsequently br pointed out. 

C 

Ba 

With the techniques of Laplace t r a n s d m  theory, it s 
possible to obtain asymptotic formulas for the span loadings 
of the various Fourier components. For the first Fourier 
component the following asymptotic result has been obtained 
by the standard methods of Laplace transform theory. 
(See Appendix B.) 

I 

X when - -+ CD 
Ba 

The asymptotic result for the span loading given by this 
equation, when compared with the results of the exact cal- 
culations in figure 16, is seen to be slightly low. However, for 
values of -c- greater than4 the difference between the results 
decreases, and equation (58) thus provides a satisfactory 
means of extrapolating the results of the present calculations 
for span loading to larger values of -- 

The asymptotic result has also been determined for the 
higher-order Fourier components as a matter of interest. 
The span loading is 

Ba 

C 

Ba 

16 rzn+- (4n-1) ! cos 2n0 
X 

( r ) 4 a  as -- -.+OD (59) Ba 
( r'n) 

~ (2n! )~(4~~*--1)2 '~- '  - 
Ba 

The results of equation (59) and the esact solution for n = l  
in figure 16 both corroborate the fact that the span loadings 
of all but the first Fourier component are negligible for c -  >4. 
I t  is also to be noted that the contribution to the loading of 
the first component given b j  equation (58 )  increases without 
limit as x+ m ; whereas the span loadings of t l i ~  higher-order 
coniponents are finite. 

To obtain tlie span loading for tlie family of combinations 
for wbich - -=4, it is necessary lo consider tlie loadings of 
both the wing alone and the Fourier componcuts. The 
necessary calculations have been carried out, a i d  the span 
loadings for the family of combinations bssrd on one and 
four Fourier components are both sho\c.n in figure 17. Thr 
loading due to tlie win5 alone is also slionn. S o  rBffect of 
wing tips has been included. I t  is to be noted i i i  figurr 17 
that, w.5crc.n~ the loading on the wing duc to its own pressure 
ficld is constaiit, there is some loss on tlic body bwaust. of 
the fact that thc prcssure field of the wiiig al01ic~ wts on the 
body only if x2pa  sin e. However, if an aftclhodp is 
includcd, some of the lift lost can be rcxcovercd. As has 
ulrrady brcii pointed out, the prrssurcxs due to the first 
Fourier compoiieiits are positive on the upper half of the 
1%-ing-body combination and produce a loss of l i f t ,  as figure 17 
shows. When the effects of four Fourier components are 
taken into account, the net lift is slightly higher than that 
for onc Fourier componeiit, but the diffrrencc is not signifi- 
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the interesting fact that the body is somewhat less than 50 
percent effective in reflection for this particular family of 
configurations. 

Lift.-For values of - < 4 t.he pressure distributions 

already presented are sufficient for obtaining span loading or 
lift on either the wing or body for all combinations having 
sufficiently large aspect ratios to avoid effects of the tips on 
the wing-body interference. This ie the case for BA>2. The 
lift results are presented in terms of a nondimensional param- 
eter k,, defined as the ratio of the lif t  on the exposed half- 
wings in combination (exclusive of that on the body) to that 
on the exposed half-wings joined toget,her. 

C 
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FIGURE 17.-Theoretical span loading for combination of body and 
rectangular wing having effective chord-radius ratio of 4; wing- 
incidence case. 

cant. For most engineering purposes, one Fourier compo- 
nent is sufficient for determining the span loading when 
- >4. 
Ba - 

Some insight into the mechanism of wing-body interference 
can be gained by comparing the span loading for the com- 
bination with those for two reference loadings: ( 1 )  the com- 
plete reflection case for which the blanketed area of the wing 
acts effectively at  iw, and (2) the no-reflection case for which 
the blanketed area of the wing is supposed to act effectively 
at zero angle of attack. The span loading corresponding to 
the first case of complete reflection of the wing pressure pulses 
by the body is, in fact, the span loading marked “wing alone” 
in figure 17. A cornparison of this curve with that based on 
one or four Fourier components shows that the loading given 
on the assumption that the wing blanketed area is fully effec- 
tive in lift is too optimistic. Under the conditions of the 
second referrrice loading, the sole purpose of the blanketed 
area is to support lift generated by the wings. A comparison 
of the span loading for this case with the true loading shows 
that the average load on the body is well predicted, bu t  that 
the loading on the wing is underestimated. A comparison of 
the true loading with those for the two reference cases reveals 

C 

.- 

For :>4 the value of kw can be obtained by using the 

asymptotic form of the span loading given by equation (58). 

c*+ w (61) 

The values of k ,  have been determined from the pressure 

distributions of figure 15 for values of - <4 and from equa- 

tion (61) for values The effect of the wing tips 

has been taken into account by utilizing reference 20. The 
results are shown in figure 18 wherein k, is given as a function 

C 

Ba- 
C of ->4. 

Ba 

Effect ive  chord - radius rat io ,  c/Da 

FIGURE 18.-Lift effectiveness for wing or control surface in 
combination with body. 

C of - for various effective aspect ratios of 2 and greater. It 

should be borne in mind that the results of the figure are for a 
combination of body and rectangular wing or an all-movable, 
rectangular control surface with no gap. It is noted in the 

figure that the exact results for - <4 can be faired into the 

Ba 

C 

Ba - 
4 In reference 10 the asymptotic enslytical expressions for kw and zcp/c are not precise by 

The maximum numerical error In kw is 
about 0.03 for very large values of e*. The precise values me given 

virtue of an incorrect upper limit on an intearal. 
about 0.01 and in 
in this report. Those for BA=2 are unchanged. 
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asymptotic results for 5 > 4 ,  thereby providing a design 

chart for engineering purposes for the entire range of -- 
Ba 

The curves of figure 18 illustrate the decrease of k, as 

increases at constant effective aspect ratio, and the slow in- 
crease of k, as the wing chord becomes very large. The loss 
of lift is most serious for gA=2 ,  being about 15 percent in 
the worst case. 

A practical point in connection with the loss of lift on the 
wing due to interference is that this loss occurs no matter 
what the body angle of attack, even though the calculations 
are made for aB=O. It occurs either in the case of a wing 
mounted on a body or in the case of a deflected all-movable 
control surface. For wings with swept leading edges for 
which all of the wing area lies in the region affected by the 
interference, even larger losses than occur with rectangular 
wings are to be anticipated. However, the loss of lift at the 
design condition can, a t  least in principle, be largely pre- 
vented by designing the fuselage so tbat it conforms to the 
first Fourier component in the wing-alone flow. This would 
involve contracting the fuselage above the horizontal plane 
of symmetry in a rotationally symmetric fashion and expand- 
ing a like amount beneath the horizontal plane of symmetry. 
Whether or not such a change would improve the lift-drag 
ratio can best be determined by experiment. 
Center of pressure.-The center-of-pressure locations 

have been calculated for the same range as t'he lift results of 
figure 18. The center-of-pressure location in chord lengths 
behind the leading edge are presented in figure 19. For large 
values of e*, an asymptotic result has been calculated for 
xCD/c using the methods of Laplace transform theory and con- 
sidering only one Fourier component. 
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Body at zero angle of attack 

2 4 6 8 IO 12 14 lb 
32 
0 

Effective chord-radius ratio, c@u 

FIGURE 19.-Center of pressure for wing or control surface in 
combination with body. 

The values of 5 have been determined from the pressure 

distributions of Sgure 15 for values of 5 <4 and by equation 

(62) for values of ?>4. The loss of lift near the tips has 

been taken into consideration. The exact results for ?<4 

have been faired into the asymptotic results for large values 

of 5 by dashed curvcs to provide an engineering design 

chart covering the entire range of -- It is again mentioned 
Ba 

that this chart is applicable both to the wing of an airplane 
or missile or to an all-movable, rectangular control surface 
with no gap. The curves of figure 19 start a t  values of 

3 corresponding to those for the wing alone at  -=O. As - 
c Ba Ba 

increases for constant PA, there is a forward movement of the 
center of pressure because of the loss of lift due to interference 
which is mostly effective on the rear of the wing. For the 
lowest effective aspect ratio of 2 there is about a 4-percent 
forward movement of the center of pressure due to interfer- 
ence in the extreme case. For large effective aspect ratios 
the forward movement is not nearly so large. As the value 

of increases for constant PA, there is an as-ymptotic 
Ba 

approach of the center of pressure back to the wing-alone 
value. 
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ANGLE-OF-ATTACK CASE 

In  figure 4 (a) it is shown how the flow field of a combina- 
tion can be built up of a body alone and two wing-body flow 
fields. The fmt wing-body flow field ( ( 2 )  of fig. 4 (a)) has 
been solved in the preceding section, and we now solve the 
second wing-body problem ((3) of fig. 4 (a)). The wing is 
effectively twisted so that the slope of its surface is a, as given 
by equation (1). I t  should be noted that the problem of the 
combination and body with a rectangular wing twisted 
according to the second term of equation (1) has been 
solved by Bailey and Phinney in reference 11 using the 
present theory. Their calculation is restricted to the body 

2 5  

0.1 

' 5 t  / 

0 2 .4 6 .a I O  1.2 
- 1  0- 

A 

FIGURE 20.-Graphical representation of velocity amplitude functions; 
sngle-of&tack case. 
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./Ba - r /a  + I 
(a) n=O 

FIGITRE 21.-Interfererice pressupe distributions of various Fourier components; angle-of-attack case. 

and is carried out for downstream distances of 28a from the 
wing leading edge. Actually, the results of reference 11 
represent the difference between the angle-of-attack arid 
wing-incidence cases treated here and are in agrcemcnt with 
tlie present results. This agrcemcnt is, in effect, an inde- 
pendent check on the accuracy of the present numerical 
results for the interference pressure distributions. 

Wing-alone potential.-The first step in the calculation 
is to determine thc wing-alonc potential. Because tlie wing 
is twisted to conform to the body upwas11 field, this ctctcrmi- 
nation is fairly tcdious and has l ) ( ~ ~ r i  carried out  i n  Appendix 
C. The form of the wing-aloric. potential found i i i  rcfcrence 
1 I is in agrwmcwt with thosc found liwciii for thc wing- 
incidence and uiiglc-of-att twk (YLSCS. 

Fourier amplitudes of body normal velocity. -Ttrci velocity 
amplitude fun( - t  iotis for tlic prwciit (’us(’ w(w wrnpirtp(i 
numerically by performing B Fouricr ririnlysis of t 1 1 t h  C ~ V U -  

lated body normal vclocity distribution at  a n u m h r  of body 
cross sections. An analytical dctwmination was made of the 
velocity amplitudc functions by t l i c  authors of rrfcrcnw 1 1  
for values of r<2. However, for r>2 the vclocity amplitude 
fmctions arc said by thcsc auttrors to lead to incomplete 

elliptic integrals, uud no analytical clctci.rtiiirutiol1 was matlc. 
A numerical determiriation has been matlc herein for 0 < ~ < 4 .  
The numcrical valucs of tlicLf2n(.r) fuiictiotis for this cast’ arc 
tabulated i n  table I1 iind plotted i n  figurc 20 for illustrat ivc 
purposes. 

Interference pressure distributions.-Tlic intrrfcrenchc 
prcssure distributions have been calculut cvl by xiumcric-el 
integration using equation (22).  ‘I’hc rcsiilts arc sliowii in 
figurc 21. The intcrfcrc~nc~e pressure distributiolis arc very 
similar to those for the wing-incidclicr case,  h i n g  about 
twice as largc. 

Pressure distribution in juncture of wing-body combina- 
tion: -Thc pressur(’ distribution of t h c .  cwnil)inri t ion is 
obtained by addirig the. iiiterferciicc prcss111’(’ c-oc.ffic-icbnts to 
the prcssure cocfficicnts of thc wiiig alolicl. Tlw rc.sdts, 
using four and six P2,, cotnponents, r~ro show11 iii fig:Uro 22. 
This figure shows that four compontnt s givc IL C . ~ O S C  1~1)l)roxi- 
mation to the linear-theory value for s/fla>1. At z/@a=O, 
the wing leading edge, linear theory wit 11 Bcskiii upu-nsli 
theory gives exactly or’/,= -4.0. For the  region r /Pa<1 
the higher harmonics have their greutcst itnportancc, and 
many components would be nxessary to gct good accnuracy. 
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(c) n=2 

FIGURE 21.-Continued. 
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(d) n=3 

FIGURE i1.-Concluded. 

of the opposite half-wing reaching the wing-body juncture 
a t  this point as shown in the sketch. 

It should now be noted that the pressure distribution for 
the case of the body a t  angle of attack with the wing at zero 
angle of incidence is represented by the s u m  of cases (1) and 
(3) as given by figure 4 (a). However, we are neglecting the 
contribution of case (1) because it is small. The contribu- 
tion to the pressure coefficient represented by case (1) is 
that due to a yawed infinite cylinder since we are neglecting 
nose effects. This contribution, which is clearly present in 
front of the wing, is 

x /po  

FIGURE 22.-Theoretical pressure distribution at wing-body juncture 
of combination using four and six Fourier components; angle+f- 
attack case. 

However, satisfactory accuracy can be obtained by fairing a 
curve through this region sincr both end points are known. 

One item of interest in figure 22 is the increase in the 
magnitude of @P/aB near point 1. This is due to the influence 

For the juncture of the combination (e=Oo) the contribution 
is about 0.1 for a B = 2 O  and 0.3 for aB=60. At aB=20 the 
effect is thus negligiblr compared to P/aB of about 4, and at 
aB=6' there are definite nonlinear effects that make a pre- 
cise application of linear theory inaccurate. For these 
reasons the contribution given by equation (63) has been 
neglected. For the top and bottom of the body the contri- 
butions are one-third of the foregoing and hence are also 
negligible. 
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Pressure distribution on body of wing-body combination.- 
The pressure distribution on the body is also obtained by 
adding the interference pressure coefficients to the pressure 
coefficients due to the wing alone. The interference pressure 
distribution for any value of 0 differs from that in the wing- 
body juncture, O=O,  only by a cos 2ne factor. For example, 
in the juncture cos 2n0 is always + 1. On top of the body, 
e= i /2 ,  cos 2ne alternates between + 1 and - 1 as n increases. 
On the t1=~ /4  meridian cos 2nO has values of 0, + 1, and - 1, 
so that when n is odd P2,=0. The pressure distributions on 
the top meridian of the body and on the 0=45O meridian of 
the body are shown in figures 23 and 24, respectively. 

P P  - 
' 8  

x/pa 

FIGURE 23.-Theoretical pressure distribution on top of combination 
using four and six Fourier components; angle-of-attack case. 

-4 

-3 

- 2  

- PP 
O e  

- I  

0 

I 
15" meridian --: I 

' 0  .5 1.0 1.5 2.0 2 5  3.0 3.5 4.0 
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FIGURE 24.-Theoretical pressure distribution on e= 45' meridian of 
body of combination using four and six Fourier components; angle- 
of-attack case. 

Several interesting effects are exhibited 11-j figurcs 23 and 
24. The stcp in the wing-aloiir prcssurc' at r/pn= 1 in  figure 
23 is effectively cancclcd by thc itit(~rf(wiiw prcssurcb from 
xiflu= 1 to r/pu= ~ / 2 ,  and for r//+z >7r/2 tlic pressur(' incr(wes 
rapidly. The effect of the intcrfcrcnc.c~ prcssurc i n  canccling 
the effect of the wing alone on the top of the body from 
z/@= 1 to x/fla=?r/2 is to bo cspectcd sincc tlic wing of the 
combination can have no effect on the body in front of the 
Mach helix (point 1 of sketch) originating at the leading edge 
of the wing-body juncture. If an infinite number of com- 
Donents had been computed, the combination pressure 
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coefficients would be identically zero from x/f la=O to r/pa= 
7r/2. The same effects are exhibited by figure 24 except that 
the wing-alone step occurs a t  r / f la=al2  and the Mach 
helix intersects the meridian at x/ f la=~/4 ,  point 1 .  The 
Mach helix from the opposite wing panel intersects the 
meridian a t  point 2 causing an additional pressure rise. 
Since the region in which flP/a,=O is known and since the 
exact linear theory is well approximated by four components 
for large values of alfla, theoretical curves of good accurac- 
can be faired from figures 23 and 24. The area under the 
high peaks in the curves near x/@u=a/4 would become in- 
finitesimal if an infinite nu:mber of interference pressure 
components 'were taken. 

Pressure distribution on wing of wing-body combination.- 
For the region in front of the Mach wave from the leading 
edge of the juncture, the calculation of pressure coefficients 
is just a wing-alone prob1e:m. The pressure coefficients 
in this region can therefore be obtained directly from the 
wing-alone potential as given in Appendix C. The result is 

I n  the region behind the Mach wave the pressure coeffi- 
cients were obtained directly from the W2"(z, T )  functions, 
as was done on the body. The results of these calculations 
for the wing pressure distributions are shown in figure 25 
and are to be compared with the pressure distributions of 
figure 15. 

Span loading.-The span loadings have been determined 
by graphical integration of the pressurc-distribution curves 
of figures 21 to 25. For a combination with a value of 
c/Pa of 4 the span loadings associated with the various 
Fourier components are shown in figure 26, which is to be 
compared with figure 16 for the wingincidence case. The 
magnitudes for the n=O harmonic of the angle-of-attack 
case are about twice those for the wing-incidence case, but 
otherwise the two cases are similar. The span loading 
including wing-alone and interference effects is shown in 
figure 27, which is to be compared with figure 17. The 
important difference is noted that the peak span loading is 
nearly equal to the root loading in the angle-of-attack case, 
but is considerably greater than the root loading in the wing- 

x /bo 

FIGURE 25.-Theoretical pressure distribution acting on wing of 
combimtion; angle-of-attack case. 
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FIGURE 26.-Theoretical span loading of various Fourier components 
acting on combination of body and rectangular wing having effective 
chord-radius ratio of 4; angle-of-attack case. 

incidence case. Because of the difference in the shape of 
the span loadings, a different trailing vortex pattern would 
be associated with each. No effect of wing tips is included 
in figures 26 and 27. 

Lift.-From the theoretical wing pressure distributions of 
the combination the lift of the wing panels in the presence 
of the body can be calculated as a function of PA and c/@a. 
To show how the body upwash is effective in increasing the 
lift of the wing, a factor Kw has been calculated. This 
factor has been defined as 

Wing -+ 

Here Lwc is the lift of the pcnels in tke Frese11c.e of the body 
and Lw is the lift of tbe v, ing p n e l s  joined together at angle 
of attack aB. In  calculating I_, first tbe lift of tbe exposed 
panels as part of tbe wing done mcst be calculated. This 
was done by thc use of revrrsibility theorems described in 
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FIGURE 27.-Theoretical span loading for contbinatiori of body and 
rectangular wing having effective chord-radius ratio of 4;  angle-of- 
attack case. 

reference 21. The lift of the entire wing alone iilcludiiig 
the blanketed area u-as so determined. The lift of the 
blanketed area u-as then calculated from the potential 
function given in Appendix C and subtracted from the lift 
of the entire wing alone to get the lift of the panels. The 
loss of lift on the panels due to interference as determiiictl 
by graphical integration u-as then subtracted to get Lw.c. 
The values of Kw so calculated are showii ill figure 28 (a) 
as a function of c/@u and in figure 28 (b) as a fuiwtioii of ais. 
Figure 28 (a) shows a large effect of @A a t  coilstant c/,da; 
whereas figure 28 (b) shows a small effect of 0.4 at coostant. 
ais. 

In figure 28 (b) the effect of aspect ratio on K, at u, fixtd 
value of a j s  is less than the precision of the calculations BS 
indicated by tlie cross-hatched area. For comparison the 
values of K ,  calculated from slender-body theory have been 
included i n  the figure 

(66) 
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(a) Effect of chord-radius ratio. 
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FIQURE 28.-Lift effectiveness for rectangular wing in combination 
with body; angle-of-attack case. 

E f  tec t i ve  rad ius-sem i span rat io, a/s 

(b) Effect of radius-semispan ratio. 

FIGURE 28.-Concluded. 

The close agreement be tween the linear-theory results for 
the present case and the slender-body-theory results is 
noteworthy since the rectangular wing and body combina- 
tions considered here are not slender. This result suggests 
that slender-body theory can be used for calculating lift 
ratios for nonslender configurations. 

111. COMPARISON OF EXPERIMENT AND THEORY FOR 
RECTANGULAR WING AND BODY COMBINATION 

APPARATUS AND PROCEDURE 

An investigation to evaluate the present theory wits made 
in the Ames 1- by 3-foot supersonic wind tunnel. This wind 
tunnel was equipped with a flexible-plate nozzle that could 
be adjusted to give test-section Mach numbers from 1.2 to 
2.2. The pressure measurements are obtained as photo- 
graphic recordings of a multiple-tube manometer board 
using dibutyl phthalate as the fluid. 

-4 25 -4 
r-Or i f ice sur face 

FIQURE 29.-Pressure distribution model (all dimensions in inches). 

The sting-supported model, which is diagrammed in figure 
29, is a combination consisting of a cylindrical body with an 
ogival nose and a rectangular, wedge-shaped wing. The 
dimensions of the model are given in figure 29. The wing 
was made 10 percent thick to minimize aeroelastic effects. 
I t  was mounted in the body by means of a set of angle blocks 
which enabled the flat wing surface containing the orifices 
to be set a t  Oo, -1.9', -3.8', and -5.7" angles of incidence 
with respect to the body center line. The pressure orifices 
were all located on the upper surface of the modal. The 47 
orifices were distributed along seven spanwise stations in 
order to give a comparison with theory for the wing and t h  
body. The locations of the orifices are given in table 111. 
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Since this investigation required a comparison of the data 
for several Mach numbers and Reynolds numbers at the same 
values of aB and iwl it was necessary to set aB and iw ac- 
curately for each measurement. The sting support by which 
the model was mounted had sufficient flexibility that it was 
deemed necessary to have means for accurately settmg the 
values of aB and iw under tunnel operating conditions. The 
values of i, were accurately set by means of angle blocks in 
the body. The angle of attack was set by a special image 
projection device. A mirror was inserted in the schlieren 
system so that sn image of the model was cast upon a screen. 
With the wind &, the model was set at the desired value of 
aB and the inclination of the model image was marked on the 
screen. With the tunnel in operation at the desired pressure, 
the angle of attack of the model was adjusted until the 
indination of its image was parallel to the calibration line 
made on the screen with the wind off. To check this 
method, a horizontal and vertical wire grid was placed on the 
tunnel window and schlieren pictures were taken of the model 
while the tunnel was in operation. These pictures showed 
that the image projection device set aB to within f0.07' of 
the desired value. I t  was especially necessary to set aB 
accurately for the small angles to avoid large percentage 
errors in the angle setting. 

The model angle of attack ranged from $6' to -6' in 2' 
increments, and the wing-incidence angle ranged from 0' to 
-5.7' in 1.9' increments. The test was performed a t  the 
two Mach numbers 1.48 and 2.00 and at the Reynolds 
numbers of 0.6, 1.2, and 1.5 million, based on the wing chord. 
The model was tested for all combinations of these values of 
the four parameters investigated. 

A complete set of data in the form of P for the Reynolds 
numbers 0.6, 1.2, and 1.5X106 at  M=1.48 and for R= 
1.5X 1 P  at M=2.00 is presented in table IV. These values 
of P are, for the most part, averages of two readings. 

1 

1 

REDUCTION AND ACCURACY OF DATA 

All data are reduced to the coefficient form (p -p l ) /qo .  
Actually the quantity ( p - p T ) / q T  was measured, and subse- 
quent corrections were applied to change the reference static 
pressure to p ,  (pl is the static pressure at the particular orifice 
in question when aB=iw=Oo) and the reference dynamic 
pressure to qo. Since p ,  includes the effects of nose thickness 
and stream angle, using p ,  as a reference pressure minimizes 
these effects and essentially gives only the pressures due to 
the angle settings of the model. The dynamic pressure was 
adjusted from qT to  go on the basis of a previous pressure 
survey of the tunnel. This latter adjustment was negligible 
for M= 1.48 and amounted to less than a 3-percent correction 
for M=2.00. For the purpose of comparison with theory 
the pressure coefficient ( p - p , ) / q ,  is reduced to the parameters 
DP/ffB for i w = O o  and BP/iw for aB=O'. 

Two types of errors entered into the experimental investi- 
gation: systematic errors and random errors. In this paper 
accuracy will be taken as the ability of the experimeot to 
give the true values without nose effect or stream angle and, 
hence, is a measure of the systematic errors. Precision will 
be taken as the ability to repeat the data and, hence, is a 
measure of the random errors in the experiment. 

Several factors contributed random errors. The major 
factor was the error in the angle-of-attack setting. The un- 
certainty in each angle setting was f0.07', but each measure- 
ment was dependent upon two angle settings: the setting for 
the condition represented and the setting to determine the 
zero correction. This leads to a net uncertainty of 0.1' 
which would account for a 5-percent error for angles of 12'. 
Most of the remainder of the uncertainty in the data is due 
to the fact that the reference wall static pressure in the tunnel 
changed slightly from run to run while the total pressure 
remained constant. Although the magnitude of this pressure 
change was quite small, it  was large enough compared to the 
small pressure differences for the 2' angle settings to cause 
as much as a 3-percent error. In addition to these factors, 
between 1-percent and 2-percent uncertainty was observed 
in reading the data from the manometer-board pictures. 

To determine expximentally the precision of the data, a 
large number of repeat measurements were taken and 
compared. I t  was found that for aB or iw=12' ,  two 
independent determinations of BP/aB or @P/iw differed from 
each other by 1 7  percent on the average. For aB or iw= 1 4 '  
and a B  or iw= +6', the experimentally determined precisions 
of BP/aB and BPli, are 1 4  percent and f 2  percent, respec- 
tively. The precision in BP/ffB increases wit-h the magnitude 
of the angle because a large part of the random error is due 
to the angle setting. The known major experimental errors 
are due to stream-angle and body-nose effects. The effect 
of these factors was not determined, but, as previously 
described, corrections were applied to minimize their effect, 
assuming the effects did not vary appreciably with angle-of- 
attack settings. This assumption should be good for the 
body-nose effect. However, it  is not necessarily a good 
assumption for the stream-angle effect, since the stream 
angle varies with vertical location in the tunnel and the 
model moves approximately 6 inches in a vertical direction 
between (TB= +So and aB= -6'. Since the stream-angle 
correction that was used was obtained for the a B = O o  position 
in the tunnel, data obtained at aB=O0 should have no 
appreciable error due to stream angle. For other values of 
as, some error due to stream angle is p~ssible .~ 

For the purposes of this paper, the important question is, 
"How well does theory predict the experimental data?" 
Direct comparisons between linear theory and experiment 
will be made only for aB==t2 '  and iW=-l.9' data. In 
figure 30 experimental pressure distributions in the wing-body 
juncture obtained from two independent measurements with 
iW=-l.9' and a B = O o  are shown together with a faired 
curve of their average values. The f7-percent limit of 
precision about the average value is represented by the 
dotted lines. The figure shows that the theoretical value 
generally lies between these dotted lines, and therefore the 
theory predicts the experimental values within the precision 
of the data in this example. 

GENERAL PHYSICAL PRINCIPLES 

Before the discussion of the results of the investigation in 
detail, it is well to give first a general physical description 
of the effects to be expected. Figures 31 and 32 show 
~ 

8 A stream-angle and pressure survey of thr rn dbi I u - i w I  XI the vertical plane of symmetry 
indicated that stream-angle variation caused thr ~ : iue~i~ 'ude  of the experimental values of 
@Plan to be 4 percent high on the average. 
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FIGURE 30.-Comparison between two independent readings of pressure 
distribution in wing-body juncture; as=O, iw= 1.9', M= 1.48, 
R=1.5X106. 
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Intersection of Mach 
cones with surface 
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FIGURE 31 .-Isometric drawing of pressure distribution acting on 
conibiriation of body and rectangular wing; angle-of-attack case. 

qualitatively the pressure distributions to be expected on a 
rectangular wing and body combination for the angle-of- 
attack case and the wing-incident-r case, resprotivcly. The 
chordwise variations of the coc4€icicnt, ~ P / c u ,  or @P/i,, a r ~  
shown for five stations by the shticlcd Tlicsc figurw 
show that AIaA cones cnittnat ing from the wing-body 
juncture determine tbe points at which thch various effects 
of wing-body interference are felt. On the cylindrical body 
the pressure coeffic+nt is zero in front of the Mach helix 
originating at the lcading edge of the wing-body juncture. 
The body pressuro cwffi(*icrits here arc taken as zero bwause 
the effcots of carossflow on the body pressures tire very 
small, as shown i i i  c-onncction with equation (6:3). Howwer, 
as shown by the two stations on tlic body, tlir prossure rises 
abruptly behind this hlac.11 helix, point 1, in  both figures. 
The Machh helices from t l l c  two wing pnriels ( w s s  the e=,$ 
station simultant~oitsly so that tlicrc is only one large increase 
in the magnitude of thc pressure cuoefficient. These Mach 
helices cross the e=:h/4 station at two diffcrcnt points so 
that beyond point 1 there is a secondary increase in the 
pressure coefficieiits at point 2.  Thcw Mach helices continue 

0 The pressure distribution shown for the 8=3*/4 station on the body is idrntirul to the 
pressure distribution for thv @=xi4 station due to the symmetry of the model 

to curl around the body until they strike the wing panel at 
points 3, where part of the pressure disturbance continues 
along the wing and part of it is reflected along another 
Mach helix on the body, causing a further increase in the 
magnitude of the pressure coefficients at points 4. Another 
pressure disturbance originates a t  the trailing edge of the 
wing-body juncture that causes the decrease in the magnitude 
of the pressure coefficients noted a t  points 5 of the two 
figures. 

Intersection of Mach 
cones with surface 
of combination 

_--- 

FIGURE 32.--Isometric drawing of pressure distribution acting on 
combination of body and rectangular wing; wing-incidence case. 

On thc wing of the combination the pressure coefficient is 
the same as that for a wing alone in front of the Aiach wave 
from the wing-body juncture, except that when the body is 
a t  an angle of attack the body upwash effectively twists the 
wing in a manner such that a w = ( Y g ( l + a * / f ) .  Figure 31 
shows this effect of body upwash along the leading edge of 
the wing where the pressure coefficient decreases as y/a 
increases because of the effective twist of the wing. The 
importance of body upwash can be seen by compuriilg thc 
pressure distribution along the leading edge it1 figure with 
tliut i n  figurt> :3Z. T h e  prossure cocffic+nt at tho wing-bodp 
juncture i n  figure :%I is twice that in figurtl 32 whore there is 
no body upwash. 'l'hc pressure coefficient at aiiy given 
spanwisc st at ion remains nearly constant betwcen t h e  wing 
leading edge and the Alach wave from the wing-body juiic- 
t ure. Rrliind the Mach wave, interfcrencbc from tlic wing- 
body junc-t urc causes the pressurtl coefficient to ciccwase i n  
magnitude tis shown in tho two figurcs. 

EFFECTS OF ANGLE OF ATTACK 

Comparisotis between theory anti experirncnt for the  
angle-of-atttwk case arc made in figures 33 for datu ut  II 

Rcyiiol(1s ~iumber of 1.5 X 1 OB and AIuch numbers of 1.48 
and 2.00 with i,=0" and as= 2 2 O  atid * G o .  

Pressure distribution in juncture of wing-body combina- 
tion.-A comparison between linear theory and experiment 
for the pressure distribution in the wing-body juncture is 
made in figures 33 (a) and 33 (b) for both Alach numbers. 
The sketches show the pertinent Mach lines arid thc span- 
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X/& 

(a) M=1.48, y/a=1.02 
(b) M=2.00, y / ~ = 1 . 0 2  

FIGURE 33.-Pressure distributions due tQ angle of attack; R=1.5X 10s. 

wise location of the orifices.' The experimental data points 
from the wing surface on which a compression occurs (nega- 
tive angle of attack) are represented by flagged symbols, and 
the data points from the surface on which an expansion 
occurs (positive angle of attack) are represented by un- 
flagged symbols. The figures show that the theory predicts 
the magnitude of @P/a, about 5 percent below the average 
of the aB= 1 2 O  experimental values at M=1.48 and about 
15 percent below experimental values at M=2.00. The 
chordwise variation is well predicted by the theory. 

Linear theory predicts that the parameter bP/ffB is inde- 
pendent of angle of attack. Actually it is not, and the 
nonlinear effects of angle of attack cause a spread in the 
data. I t  is possible to evaluate approximately the variation 
in the parameter flP/a, with angle of attack at  the Wing 
leading edge. First the upwash just in front of the leading 
edge was calculated using equation (1) which is based on 
linear theory. Then the pressure coefficients a t  the wing 
leading edge were computed using shock-expansion theory. 
The values of BPIa, for aB=-60 and +6" so calculated are 

The loeation of these Mach lines is only quqtative becsuse the calculations were made 
using shockexpanston theory, with the assumption that there was no local M A  nnmber 
variation behind the leading edge of the whg. To simplify the sketches, the Maeh h e l k  
on the body are represented as stdght lines. 

shown in figure 33 for values of y/a of 1.92, 2.58, and 3.92. 
For 34=1.48 body upwash caused the shock wave to be 
detached from the wing in the wing-body juncture so that 
no calculation of tht: spread could be made there. For 
M=2.00 it  was found that near the wing-body juncture the 
predicted spread in @PlaB between -6' and +So was about 
twice the experimental spread; whereas for yla greater than 
about 1.5 the experimental spread was fairly well predicted. 
This ditTerence between shock-expansion theory and the 
experimental data in the wing-body juncture is probably due 
to the combination of several things. First, near the wing- 
body juncture the body upwash is modified by viscous effects. 
Second, the theoretical spread was calculated at  the leading 
edge of the wing, and this value was assumed to apply rear- 
ward to the first orifice. This assumption is probably good 
beyond y/a= 1.5 where the chordwise changes in pressure 
me small back to the b t  orifice, but, in the juncture, the 
changes in the chordwise direction are large near the wing 
leading edge so that this assumption is probably invalid. 
Third, the contribution of the body crossflow field previously 
mentioned is present (eq. (63) ) .  

Another phenomenon not predicted by linear theory is 
shown by figure 33 (a). The linear theory predicts that the 

x / 8 0  

(c) M=1.48, top meridian. 
(d) M=2.00, top meridian. 

FIGUBE 33.--Continued. 
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(e) M=1.48, 8=45O meridian. 
(f) M=2.00, 8=45O meridian. 

FIGURE 33.-Continued. 

Mach helix from the opposite wing panel (see sketch) should 
intersect the wing-body juncture at  point 1, causing an 
increase in the magnitude of pPlaB. This effect is observed 
experimentally for negative values of cyB in front of point 
1 rather than exactly a t  point 1 .  The reason is that for 
negative values of aB a compression occurs on the orificed 
surface reducing the local Mach number from the free- 
stream Mach number, thus increasing the Mach angle and 
causing the Mach helix to shift forward. The result is the 
spread of the data s h m n  in figure 33 (a) near point 1.  This 
effect is not shown by figure 33 (b) because the Mach helix 
lies more rearward for M=2.00 so that the orifices do not 
extend to the Mach helix as shown by the sketch. 

Figures 33 (a) and 33 (b) show that Mach number has no 
effect upon the magnitude of the higher-order spread due to 
angle of attack or upon the chordwise variation of @P/ffBu,, 
but on the average the magnitude of @P/f fB  is about 10 
percent higher for M=2.00 than for M=1.48. 

Pressure distribution on top meridian of body of wing-body 
combination.-A comparison between the linear theory and 
experiment for the pressure distribution on the top meridian 
of the body is made in figures 33 (c) and 33 (d). These 
figures show that theory and experiment are in good accord 

8 1  

0, q 
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(g) M =  1.48, y/u= 1.25 
(h) M=2.00, y/u=1.25 

FIGURE 33.-Continued. 

for aB= f 2 O 1  particularly at  M=1.48. However, nonlinear 
effects due to aB cause a large spread between the data for 
aB=+60 and aB=-60.  All the effects predicted to occur 
on the body in the section of the report “General Physical 
Principles” are observed experimentally, but not exactly 
a t  the points predicted because of nonlinear effects. The 
pressure rise predicted a t  point 1 of figures 33 (c )  and 33 (d) 
occurs prematurely and is less abrupt than expected for all 
angles of attack because of the boundary layer on the body. 
The variation in local Mach number causes the Mach 
helices to shift forward for the negative angles of attack 
as discussed in the section treating the wing-body juncture. 
The increase in the magnitude of @ P / ( Y B  expected at  point 2 ,  
x / @ a = 3 ~ / 2 ,  actually occurs a t  about x/j3a=4 for (YB=-2’. 
The decrease in magnitude of j3PfffB that is expected a t  
point 3 actually occurs a t  about x/j3a=4.0 for aB=-60 .  
For the positive angles of attack the Mach helices are shifted 
rearward so that these effects are not observed experimentally 
in the range of x/pa measured. 

Figures 33 (c) and 33 (d) show that, in general, the 
M=1.48 data are predicted better by the theory than are 
the M = ~ . o o  data. For M=2.00 there is an unexpectedly 
large pressure coefficient in front of point 1 for negative 
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(i) M =  1.48, y/a= 1.92 
(j) M=2.00 ,  y/a=1.92 

FIGURE 33.--Continued. 

angles of attack. The predicted pressure coefficient due to 
crossflow is only about 0.1 in units of the ordinate and hence 
does not account for the observed effect at M=2.00. For 
aB= -2’ and M=2.00, @P/aB dips slightly near point 1 and 
then rises and overshoots the aB=-60 data. This effect is 
due to the boundary-layer condition on the body and will 
be discussed in detail in the section dealing with Reynolds 
number effect. 

Pressure distribution on 8=45’ meridian of body of 
wing-body coabination.-A comparison between t8he linear 
theory and experiment for the pressure distribution on the 
8=45O meridian of the body is made in figures 33 (e) and 
33 (f). Essentially the same effects are shown on this merid- 
ian as on the top meridian. 

Just as for the top meridian of the body the experiment is, 
in general, better predicted by the theory for M=1.48 than 
for A4=2 .OO, and the same boundary-layer eff ects are evident 
near point 1 for M=2.00.  

Pressure distribution on wing of wing-body combination.- 
Experimental chordwise pressure distributions on the wing 
are shown in figures 33 (g) to 33 (n) for the four spanwise 
orifice stations y/a=1.25, 1.92, 2.58, and 3.92. I n  front of 
the Mach cone from the wing-body juncture no interference 

5 

(k) M=1.48, y/a=2.58 
(1) M=2.00, y/a=2.58 

FIGURE 33.-Continued. 

is:felt from the wing-body juncture so that the theoretical 
pressure distribution for a wing alone in the body upwash field 
is used in this region. Figures 33 (g) to 33 (n) show that on 
the average the wing-alone theory predicts magnitudes of 
PP/aB about 5 percent below the measurements for aB= & 2 O  

for M=1.48 and about 12 percent below the measurements 
for M=2.00. The spread in the data between a B = + 6 ’  
and aB=-60 is fairly well predicted by shock-expansion 
theory for y/a greater than about 1.5 (figs. 33 (i) to 33(n)). 
At y/a=1.25 the predicted spread (not shown) is too large, 
just as for the wing-body juncture. 

Some of the interference effects discussed in the section of 
the report entitled “General Physical Principles” are illus 
trated in figures 33 (g) to 33 (n). The interference effect from 
the opposite wing panel is observed in figure 33 (g) where, 
just in front of point 1, the same spread in the data occurs as 
in the wing-body juncture. According to linear theory the 
disturbance originating at  the nearer wing-body juncture 
should be felt a t  point 2 of figures 33 (i) to 33 (m), and the 
magnitude of @€‘/aB should begin to decrease from the wing- 
alone value there. These figures show that the magnitude 
of flP/aB does decrease in the neighborhood of point 2. They 
also show that, in general, the aIj=+6O and the aB=-60 
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FIGURE 33.-Coricluded. 

data com(1 together in the neighborhood of point 2. This 
convergence is due to a variation in the local Mach number 
with as. This is shown by the sketch in figure 33 (j)where 
the disturbance from the wing-body juncture is first felt a t  
point 3 for aB=-6", whereas it is first felt a t  point 4 for 
as= 4-6". Since the magnitude of BP/aB begins to decrease 
as soon as this disturbance is felt, the magnitude of /3P/aB 
begins to decrease a t  a smaller value of z/Ba for aB=-6" 
than for as= +So, thus causing the convergence observed. 
The skotclies in figures 33 (k) and 33 (m) show that the 
disturbance from the wing tip should also cause the aB= + S o  
and as= -6" data to come together beyond point 6 in these 
figures. The figures show that the data not only come 
togc.ther but actually cross over and reverse order just beyond 
point 6. 

The orily significant effect of Mach number shown by 
figures 33 (g) to 33 (n) is the approximately IO-percent-larger 
values of B€'/aB for M=2.00 than for M=1.48. Nearly 40 
percent of this difference may be due to differences in stream 
angle in the wind tunnel for the two Mach numbers. 

Span load distribution.-Span loading is defined for both 
the body and the wing as the integral (see eq. (57)) 

The experimental and theoretical results for the span loading 
distribution on the wing and body of the combination are 
presented in figure 34. No account has been taken of tip 

(a) M=1.48 
(b) M=2.00 

FIGURE 34.-Span load distributions due t o  angle of attack; 
R = 1.5 X lo6. 

effects in calculating the span loading because the twist of 
the wing makes a determination of these effects a difficult 
wing problem. The theory is thus valid only inboard of 
point 2. If an approximate answer is needed, the Busemann 
tip solution (ref. 20) can be joined onto the span loading a t  
point 2. Figure 34 shows that the theory is generally about 
10 percent below experiment. This result is not surprising 
in view of the comparisons between the experimental and 
theore tical pressure distributions of figure 33. Of particular 
interest is the fact that, in general, the higher-order differ- 
ences due to as that were so large for the pressure-distribution 
results are negligible for the span loading distribution. The 
only exception is on the top of the body, y/a=O, and M=2.00, 
where the effects of boundary-layer and shock-wave inter- 
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action are large. The esplanation for the independence from 
aB is that the higher-order effects on the top surface are 
compensated for by higher-order effects of the same magni- 
tude on the lower surface so that the net loading per unit 
angle is very nearly independent of angle of attack. 

EFTECT OF WING-INCIDENCE ANGLE 

Comparison is made between theory and experiment for 
the wing-incidence case for data taken at a Reynolds number 
of 1.5X1OS and Mach numbers of 1.48 and 2.00 with aB=Oo 
and iw= - 1.9' and -5.7'. It will be remembered from the 
section on the accuracy of data that there is no appreciable 
error due to stream angle for the wing-incidence case, and 
the comparison between elrperiment and theory reflects this 
fact. 

FIGURE 35.-Pressure distributions dire to wing inciderice; R= 1.5X lo6. 

Pressure distribution in wing-body junctures.-The linear 
theory and experimental pressure distributions in the wing- 
body juncturc are compared in figures 35 (a) and 35 (b). 
The s-pnbols in the figurrs are flagged to be consistent with 
the use of flagged symbols for negative angle-of-attack data. 
The figures show that the experimental values are about 5 
percent below those predicted by the theory for i w =  - 1.9'. 
The magnitude of the nonlinear effects due to i, is predicted 
at the leading edge by shock-expansion theory. Figures 
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(c) M =  1.48, top meridian. 
(d) M=2.00, top meridian. 

FIGURE 35.-Continued. 

35 (a) and 35 (b) show that t h e  spread predicted in this 
manner can account for the experimental results. The pre- 
mature increase in the magnitude of @/i, near point 1 is 
due to the effect of the opposite wing panel and variation of 
the local Mach number as discussed in the aiigle-of-at tack 
section. S o  significant effect of Mach number was fouid 
on the parameter BPli,. 

Pressure distribution on top meridian of body of wing-body 
combination.--A comparison between the linear theory anci 
experiment for the pressure distribution on the top meridian 
of the body is made in figures 35 (c) and 35 (d). Tliesc 
figures show that theory and experiment are in good accord 
for iw7= - 1.9'. However, nonlinear effects due to i, cause 
much larger differences betwen theory and experiment for 
i,= -5.7'. This is consistent with the uiigle-of-at tack 
case where the higher-order effect due to was large for 
negative angles of attack. 

.Ill of the  effects observed for the  angle-of-at tack caw duc 
to disturbances from the wing are also showii to occur for the 
wing-incidence case in figures 3.5 (c) and 35 (d). The paths 
of these disturbances as predicted by linear theory are sho~vn 
on the sketch, and the positions at which the effects are 
e-upected to occur are shown 011 the abscissa. 
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(e) M =  1.48, 8=45O meridian. 
(f) df=2.00, 8=45' meridian. 

FIGURE 35.--Continued. 

The only significant effect of Mach number apparent in 
figures 35 (c) and 35 (d) is the larger boundary-layer and 
shock-wave interaction for M=2.00 than for M =  1.48 near 
point 1. The M=2.00 experimental data for iw=-1.90 
dip and then overshoot a t  this point. This phenomenon is 
discussed in more detail in the section of the report on 
Reynolds number effect. 

Pressure distribution on 0=45O meridian of body of 
wing-body combination.-Linear theory is compared with 
experimental results for the pressure distribution on the 
0=45O meridian of the body of the combination in figures 
35 (e) and 35 (f). The effects shown by the figure Ere con- 
sistent with those shown for the angle-of-attack C ~ E C  and 
for the wing-incident-e case on the top mcridian of the body. 

Pressure distribution on wing of wing-body combination,- 
A comparison between linear theory and experiiccnt for the 
prcssurc (list ribution along several spanwisc stations is madc 
in figures 35 (a) to 35 (11). The experilncntal data (figs. 
35 (k) and 35 ( I ) )  show that, in general, fiP/iw for the iw= 
-1.9O data is constant and nearly equal to -2 in front of 
the Mach coiie. Behind the Mach cone the theory generally 
predicts values about 5 percent above the experimental data 
for iW=-l.9O. The higher-order effects due to iw cause 

x/Ba 

(9) M =  1.48, y/a- 1.25 
(h)  M=2.00, y/a=1.25 

FIGURE 35.--Continued. 

larger differences between linear theory and experiment for 
iW=-5.7O. The figures show that these differences are 
well predicted by shock-expansion theory. The effects due 
to the influence of the Mach waves are the same as those 
discussed for the angle-of-attack case. There is no effect 
of Mach number evident on the wing of the wing-body com- 
bination other than that predicted by linear theory. 

Span load distribution.-A comparison between the 
theoretical and experimental results for span load distri- 
bution on the wing and body of the combination is made in 
figure 36 for iW=-1.9O. The decrease in the span loading 
duc to the wing tip was calculated by the mathod of Buse- 
m m n  (ref. 20). In part (a) of figure 36, interference from 
both the body and the wing tip is felt between points 1 and 
2, but in part (b) no interference is felt between points 1 and 
2, and thc span loading is that of a two-dimensional wing 
done. 

Figure 36 shows that, in general, the experiment is 5 pcr- 
cent lower than the linear-theory prediction. Since all 
pressure measurements for the wing-incidence case were 
made for negative values of iw, the experimental values 
used in this figure were obtained by doubling the values 
of fip/iw obtained for iw= - 1 .go rather than by considering 
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(i) M = 1.48, y/a = 1.92 
(j) M=2.00, y/a=1.92 

FIGURE 35.-&ntinued. 

two surfaces as for the angle-of-attack case. Since this 
increases the nonlinear effects of i, rather than minimizing 
them, only the iW=-1.9O data (for which the nonlinear 
effects are small) were plotted. However, the present 
method is applicable to the prediction of the net span 
loading for larger values of i, because the nonlinear effects 
on the upper and lower surfaces tend to cancel each other, 
as shown for the angle-of-attack case. 

EFFECT OF REYNOLDS NUMBER 

The primary effect of Reynolds number in this investiga- 
tion was on the body. Reynolds number was found to have 
no significant effect on the pressure distribution on the wing 
of the combination for the range investigated. Figure 37 
shows the boundary -layer condition, as observed in schlieren 
pictures, on top of the body at the point of intersection with 
the Mach wave from the leading edge of the wing-body 
juncture for R=0.6 and 1.5X106. The transition and 
separation regions shown in figure 37 indicate approximately 
the ranges of mB and i, in which the boundary layer changes 
from laminar to turbulent or separated flow at the Mach 
wave from the wing-body juncture. In laminar and turbu- 
lent regions the flow remains laminar or turbulent across the 

(k) M=1.48, y/a=2.58 
0) M=2.00,yja=2.58 

FIGURE 35.-Continued. 

Mach wave. Some of the Reynolds number effect shown 
by figure 37 may be due to changes in the turbulence level of 
the wind tunnel. 

It is to be expected that data obtained for several angle 
combinations within any one of the regions shown in figure 37 
would show no significant differences due to viscous effects, 
but that these data would differ from data in other regions. 
For example, for M=1.48 and R=0.6X10s the data for 
aB=-2' with i w = O o  should differ from the data for 
uB= -6' with iw=Oo because transition occurs a t  the shock 
wave for the latter case but, not for the former. That there 
is a difference is shown in figure 38 where the pressure dis- 
tributions on top of the body for these two conditions are 
compared. In front of the shock wave the flow is laminar 
for both angles of attack so that there is no difference in the 
two sets of data. However, for a B = - - 6 O  transition occurs 
at the shock wave and the pressure rises as predicted, while 
for aB= - 2 O  laminar flow persists behind the point at which 
the shock is expected and the pressure rise occurs much later 
than predicted. In fact, the pressure rise does not occur 
until the transition point shown in the figure is reached, and 
then it tends to overshoot. This phenomenon of the delayed 
pressure rise was observed to occur whenever laminar flow 
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.5 

(m) M=1.48, y/a=3.92 
(n) M=2.00, y/a=3.92 

FIGURE 35.-Concluded. 

persisted beyond the point a t  which a shock wave from the 
wing was predicted to exist. When the disturbance from 
the wing is an expansion wave, the pressure-coefficient curves 
rise approximately as predicted, regardless of the type of 
boundary layer. The conditions for which this delayed 
pressure rise was observed to occur are shown by the dotted 
areas in figure 37. Two other examples of this phenomenon 
may be seen near points 1 of figures 33 (d) and 35 (d) for 
ae=-20,  iw=Oo and aa=Oo, iW=-1.9O, respectively. 

In  figure 39, the pressure distributions on top of the body 
are compared for three Reynolds numbers. It is ehown that 
data for the two highest Reynolds numbcrs, Zt=1.2 and 
1.5X1Oe, agrce well, while tho data for thc lowest Reynolds 
number differ from those for the higher Reynolds numbrrs. 

COMPARISON WITH THEORY FROM OTHER SOURCES 

The three theories for which nurnericd results arc available 
aro comparcd in figure 40. The theory due to Fcrrari was 
obtained by cross-plotting from a figure in reference 22 so 
that the curve shown is only approximate. The theoretical 
curve due to Morikawa is obtained from tabulated results 
given in reference 4.  The experimental-data region was 
determined by the extreme values obtained for aB= f 2 O  for 

Y / O  

(a) M= 1.48 
(b) M=2.00 

FIGURE 36.-Span load distributions due to wing incidmce; 
R=1.5X1O8. 

Mach numbers 1.48 and 2.00. From this figure it appears 
that either the theory of Morikawa or the present theory can 
be used to predict the pressure distributioll in the juncture 
of a wing-body combination. Ferrari’s theory predicts 
values that are somewhat low a t  the leading edge of the wing, 
but i t  appears that if numcrical results were available beyond 
%/@=0.7, they would lie within the experimental range. 
For a more complete comparisorl of the theories of Fcrrari 
and Nielscn, see references 9 and 23. Except for tlie prcsent 
theory, no numerical results for the pressurc distribution 011 

the body werc available for comparison. 

CONCLUSIONS 

A theory of wing-body interfcrcncc for supcrsoiiic spc~eds 
has been developed. The theory was applied to the calcu- 
lation of the separate effects of body angle of attack and wing 
incidence on the pressure distributions acting on a rectan- 
gular wing and body combination. 0 1 1  the basis of compar- 
ison between the theoretical predictions and cxpcrimental 
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Delayed pressure rise region 
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:.:.:.:.:.:.:. .............. ....... 

Wing-incidence angle, &, deg 

(a) M =  1.18, R=0.6X 106  
(c) M=2.00, R=0.6X 106 

(b) M=1.18, R=1.5X10fi 
(d) M=2.00, R=1.5X10fi 

FIGURE 37.--Boundary-layer condition on top meridian of body at 
point of intersection with Mach helix from wing. 

FIGURE 38.-Effect of transition position on pressure dist.ribution on 
top meridian of body; M=1.48. R=0.6XiW, and iw=O0.  

x/Po 
FIGVRE 39.-Effect of Reynolds number on pressure distribution on 

top meridian of body; M=1.48, ue=-60, and i w = O o .  

-4c  

,r-- Region of experimental doto 

orikowa ref 4 

I 1 I 

0 5 10 1.5 2 0  2 5  30 35 $0 
.'/DO 

FIGURE 40.-Comparison among several theoretical calculations of 
pressures in the wing-body juncture of the combination; angle-of- 
attack as. 

measurements, the following conclusions are drawn : 
1. Tbe present theory predicts the pressure distributions 

due to wing incidence about 5 percent high for angles up to 
2'. However, the pressure distribution due to angle of 
attack is predicted about 5 percent low for M= 1.48 and about 
10 percent low at 31=2.00 for angles between t2' and -2'. 

2. Sonlinear effects due to angle of attack and wing- 
incidence angle are large. On tlie wing tlic difference from 
linear theory due to nonlinear effects of angle can be pre- 
dicted by shock-expansion theory, except near the wing-body 
juncture for the angle-of-attack case. 

10 
percent for both the body and the wing. The prectictecl spaii 
loadings are high for the wing-incidence case and lo\\- for tlie 
angle-of -at tack case. 
4. For the angle-of-attack case, tlie pressure c.oefficients 

on the wing are experimentally about 5 percei t higher for 
M=2.00 than for 5f=1.48, when reduced to Q form that is 
theoretically independent of Mach numbt-r Otherwise 
1Iach number has no important effect. 

5 .  Viscous effects are iniportaiit only on the body where 
the shock wave from the wing causes large boundary-layer 
and shock-wave interactions for sonic angle conditions. 

XATIONAL ADVISORY COMMITTEE FOR AEROSAL-TICS 

3. Span loading was shown to be predicted within 

AMES AiEROZiAL-TICAL L.4HORATORT 

NOFFETT FIELD, CALIF. ,  Jan. 4,1954 



APPENDIX A 
DECOMPOSITION OF BOUNDARY CONDITIONS OF WING-BODY COMBINATION 

A detailed analysis of the boundary conditions for a wing- 
body combinat’ion is now carried out for the following 
conditions : 

1.  The wing is a flat plate in the z=O plane. 
2 .  The body is an infinite cylinder, the r = l  cylinder. 
3. The leading edges of the wing are supersonic. 
4. The Mach number is 8. 

Consider a wing-body combination corresponding to figure 
4 (a) and shown in greater detail in figure 41 (a). The 
potentials for the flow must satisfy several conditions: 

1. It must be a solution of the wave equation. 
2 .  It must produce no flow normal to solid boundaries. 
3. It must produce no upstream-moving disturbances.* 

and on the body 

3 ~ 0 ;  r=l  (.A2) br 

The first step in the decomposition is to break (P. into a 
potential due to flow along the x axis and one along the z 
axis in accordance with the superposition principle 

Potential % = (Pe + (Pc 

V COS aB=V COS a B +  0 

Vsinag= 0 +VsinaB 

(2) on wing: - i W v  = - i W v  + o 
2=0+ 

(2) on body: 0 = o + o  
r = l  

The flow conditions at infinity and the prescribed normal 
velocities at the combination surface also obey the super- 
position principle. 

The next steps in the decomposition are to resolve (Pb 

and pC into potentials that can easily be computed. The 
decomposition of ( P ~  into wing-alone and body-alone problems 
is illustrated in figure 41 (b). 

Potential: 4 b  = (Pd + (PC 

+b +d + +e 

(b) 

t t t t t  t t t f t  

v =  0 + V 

o =  0 + 0 

(2) on wing: - iWv= 0 - iwv 
2-O+ 

(a) Parallel and crossflow. 
(b) Parallel flow. 
(c) Crossflow 

FIGURE 41.-Decomposition of boundary conditions. 

If qPa is the potential for the complete flow about the wing- 
body combination, then the boundary condition on the 
wing is 

-_- b a -  iwv; z=O (A11 b Z  

8 Since the surfaces on whleh the boundary wndltlons are glven are parallel to thg z sxls, 
it Is neeeSSary to have thIs cnndltlon In order to differentiate upstream from downstream. 

The potential (P* due to the wing alone a t  incidence iw 
produces a velocity field normal to the r = l  surface to be 
occupied by the body. The normal velocity field is decom- 
posed into a Fourier series. Since the wing leading edges 
are supersonic, we can consider the flow above the z=O 
plane alone. To preserve the wing-alone boundary condition 
when q d  is added, we must confine ourselves to cosine terms, 
and, because of a vertical plane of symmetry, we must retain 
only cosine terms of even multiples of e in the Fourier series. 
TO counteract the distortion of the r = l  surface due to the 
wing alone, a body with opposite distortion is added in the 
form of (P~. 

37 
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The decomposition of (pc into three components is convenient; a component q, associated with cylindrical crossflow, a 
component pn due to a distorted body alone, and a component e due to a twisted wing alone. 

Potential: Bc = Bf + Be + $% 

o =  0 + 0 + 0 

aBV= aBV + 0 + 0 

The crossflow associated with ( ~ l  muses an upwash distribu- 
tion in the z=O plane which requires an equal and opposite 
twisted wing to counteract it. Again the r=l surface is 
distorted by the wing-alone flow field, and a cylinder with 
opposite distortmion is introduced in the form of to counter- 
act the distortion. 

Two convenient cases in the wing-body interference 
problem &re differentiated; the wing-incidence case in which 
a B = O  but i ,#O and the angle-of-attack case in which 
i W = O  but aB#O. The wing-incidence case is represented 
by (Pb and the angle+f-attack case by vC. 

APPENDIX B 

ASYMPTOTIC SPAN LOADING FOR FIRST HARMONIC; WING-INCIDENCE CASE 

The span loading for the first harmonic as given by 
equation (57) is 

Let us take u=1, 8=1, and Pv=-PL=Po; then the span 
loading is 

The method of calculating the asymptotic formula for the 
span loading is f i s t  t,o expand the Laplace transform in a 
series about the origin and then to take the inverse transform 
term by term. 
From equation (17) 

It is now necessary to find the series about the origin for the 
two parts of the transform of equation (B3). 

From equation (47) there is obtained 

1 ~ , ( s ) =  tz v' sin e cos (is sin e) de+ i sin e sin (is sin e) de l 

These integrals are given in terms of Anger and Weber fwc-  
tions as given on page 310 of reference 24. 

1 sin e cos (is sin e)ds=d,(k) 

sin e sin (is sin e) c ~ = r ~ ~ ( i s )  

(Weber function) 

(Anger function) 

The value of F,(s) is then 

(B7) 
i w v  F0O=,  I& (is)+iJl(iS)l 

For small values of s the Anger and Weber functions have 
the expansion 

2 

1 

E,(is) =; [l+O(is)*] 

 is) =3 [is+o(is)31 

so that 

The ratio of Bessel functions given in equation (B3) has 
an expansion around the origii which is a doubly infinite 
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From equations (B9) and (B10) we get 

.[--2J(5Jdz]=;[ 8 (?'+log r / 3 +  

logs A 1 log s+o (s log2 s) --- 
s 4  

Taking the inverse transform with the help of reference 25, 
page 282, we obtain the desired result. 

- 2 Y ( P , )  d 2 . 2  [(ri log T/2)--Y--log 2+- 
o aw n- 42 "1 

-5 " px(&.)+~] 
For any Mach number and body radius 

1 

APPENDIX C 
DETERMINATION OF WING-ALONE POTENTIAL FOR ANGLE-OF-ATTACK CASE 

The first step in calculating thc potential for the wing 
alone will bd to set up a mathematical model. Since the 
exposed wing of the combination operates in the body upwash 
field which effectively twists the wing, the wing-alone model 
is considered to be twisted in the manner predicted by Beskin 
upwash theory for y 2 a  

The concealed wing may be extended through the body 
region in any manner but, since equation (cl) gives aw=2aB 
at both wing-body junctures, i t  is taken as a flat plate at 
angle of attack 2aB (see fig. 42). 

i 
I 
I 

I I I 

I Body 
Le f t  hal f -wing - 1 -  section -Right half-wing 

I I I I I I I I I 
-4 -3 -2 -I 0 I 2 3 4 

Y / O  

FIQURE 42.--Shape of wing alone with effective twist produced by 
body upwash field; angleaf-attack case. 

The twisting of the wing is accomplished by superimposing 
a series of flat-plate wings upon a basic flat-plate wing at 
aw=2aB (see fig. 43). Each of the superimposed wings is 
at an incremental angle of attack, end cadi succcssive wing 
terminates at a valuc of y greater than tho previous one. 
As thesc iricrcintntal values of a becoi~e infinitesimally small, 
the resulting potential npproaches that of a wing with the 
twist dcfined by equation (Cl). 

For tlic purposes of deteriniriirig thc wing-alonc potential, 
the wing is considcred to bc co.mposcd of tlic three parts 
shown in figure 42: the right cxposcd half-wing, thc left 
exposed half-wing, and the wing section inside the body. 
The perturbation velocity potcntial is determined for each 

8 Both (I and 0 are taken as unity. 

of these wing sections and the results added together to 
obtain the potential for the entire wing alone. Thus, 

(Pw= (PW,+(PW,+ (PW, (C2) 

Since the wing may be Considered to be composed of an 
infinite number of flat, rectangular wings, the expression 

P(aw,y)=? (--2 cos-' ___~- -y y cosh-' A+ 
JF2 Jy2+ z2 

- 
2 cos-' -? - JW Jx'- z2 

from reference 6 for the velocity potential of a flat, rectan- 
gular wing will be used as the basic relation for the calcula- 
tions. Equation ((33) gives the velocity potential at any 
point (r,y,z) due to a flat, rectangular wing at angle of 
attack awl terminating a t  y=O, and extending to m along 
the positive y axis.1° 

Since the twisted wing was shown to be equivalent to a 
basic flat-plate wing a t  angle of attack 2aB plus an infinite 
number of modifying flat-plate wings (see fig. 43), the po- 
tential of the right half-wing may be written as 

Twisted wing 

FIGURE 43.-Formstion of twisted wing by superposition of infinite 
number of flat plates. 

10 The top and bottom wing surfaces are still considered independent. 
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The first term on the right in equation (C4) is the potential 
due to the basic exposed half-wing which terminates a t  the 
wing-body juncture, y = l ,  and is a t  angle of attack 2aB. 
The second term is the potential of the N modif3-ing wings 
each at angle of attack Aai and terminating a t  y=qr where 
I<q,< a. Since equation (C3) is homogeneous with re- 
spect to a, equation ((24) may be written 

N 
pwR=&ae, Y-1) + c0(1 ,Y- 7i)Aai. (C5) 

From equation (Cl)  

(C6) 2aB 
Y3 

daw=-- dy 

Therefore, 

where the limits of integration are determined by the range 
of y on the wing included in the fore Mach cone originating 
from the point for which pw, is being determined. From 
figure 44 i t  is apparent from the equation of the fore Mach 

FIGURE 44.--Upper value of y included in the fore Mach cone emsnat- 
ing from PI;  @=1. 

cone emanating from the arbitrary point PI for fl= 1 that 

XI2= zlz+(rlu-y1)2 

q u = y , + & F 2  (C8) 

Therefore, the upper limit of integration is 

The lower limit of integration is at the wing-body juncture, 
y = l .  From equations (C3), (C7), and (CS), 

Carrying out the integration and combining terms gives 

.*,=R.P. { 2 [-x COS-' -(Y--l)+ 
JR 

Equation ((310) gives the potential due to the exposed right 
half-wing. To this must be added the potentials due to the 
other two wing sections. The potential due to the section of 
the wing in the body region is simply the difference between 
the potentials of two flat wings at  aw=2a,. One of these 
wings terminates a t  the wing-body juncture a t  y=- l ,  
figure 42, and extends (through the body) indefinitely in the 
positive direction. The other wing terminates at the other 
wing-body juncture, y= + 1 , and also extends indefinitely 
in the positive y direction. The difference betw-een the 
potentials of these two wings is the potential of the wing 
section in the body 

The expression for Q (aw, y) is given by equation (C3). 
Since the model is symmetrical about the vertical y=O 

plane, the potential for the other half-wing is simply obtained 
by replacing y by -y in equation ((210). 

cow,=(Ow,(~,-Y, z> (C12) 

Combining equations (ClO), (Cl l ) ,  and ((212) gives the 
potential due to the entire wing alone. 

Investigation of cow as given by equation (C13) reveals 
that there are three regions on the body in which the real 
part of this expression assumes different forms. A fourth 
region, region IV, is entirely on the wing and is, therefore, 
not necessary for determining the normal velocity distribu- 
tion on the body. These regions are determined by three 
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m 

I 

FIGURE 45.-Intersection of characteristic Mach cones with z =O plane 
showing corresponding regions. 

characteristic Mach cones. One of the Mach cones origi- 
nates on the body axis a t  x = O ,  and the other two originate 
at the leading edges of the two wing-body junctures (see 
fig. 45). The expressions for the real part of cpw in the three 
regions on the body are: 
Region I: 

INTERFERENCE AT SUPERSONIC SPEEDS 41 

Region 111: 

1 2 2 -  2- y( y - 1) "Y-_- cos-' - - - 2( 2- 2). 
(y2+2~)~y2+2z-xz J 2 7  

(C 
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X 

(b! W.(z,r) 2 _< z 2 4 
CHART 1.-Continued. 
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(e) W.(x,r) 0 5 x 5 2 
CHART 1.-Continued. 
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TABLE I.-VALUES OF Mz,(t) 

2 

0 
. 05 
. 1  
. 15 
. 2  
.25 
. 3  
.35 
.40 
. 45 
. 50 
. 6  
. 7  
.75  
. 8  
.85 
. 9  
. 95 

1. 0 
1. 1 
1. 2 
1. 3 
1. 4 
1. 5 
1. 6 
1. 7 
1. 8 
1. 9 
2. 0 
2. 1 
2. 2 
2. 3 
2. 4 
2. 5 
2. 6 

3. 1 
3. 2 
3.3 
3. 4 
3. 5 

4 0  

I - m  I - m  j - - m  

-. 022 
-. 053 
-. 073 

-. 080 
-. 071 
-. 060 
-. 038 
-. 019 
-. 002 

. O l l  

_ _ _ _ - - - - -  

m - 
-. 716 
1. 334 
1. 155 
. 735 
.279 

-. 119 
-. 417 
-. 595 
-. 675 
-. 655 
-. 417 
-. 070 

.095 

.235 

.340 

.406 

.433 

.420 

.306 

. 123 
-. 062 
-. 197 
-. 256 
-. 239 
-. 162 
-. 062 

.036 

. 105 

. 134 

. 121 

.085 

.036 
-_ 013 
-. 053 
-. 063 
-. 059 
-. 042 
-. 019 

.005 

.022 

.om 
-028 
.019 
.008 

-. 002 
-. 011 
-. 014 
-. 103 

NOTE that  M & ) - + - ~  
r 
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TABLE 11.-VELOCITY AMPLITUDE FUNCTIONS 

0 

0 
02 

.04  

.06 

.08 . 10 

.12 . 14 . 16 

.18 

.20 

.22 

.24 

.26 

.28 

.30 

.32 

.34 

.36 

.38 

.40 

.42 

.44 
-46 
-48 
.50 
.52 
.54 
-56 
.58 
-60 
.62 
.64 
.66 
.68 
.70 
.72 
.74 
.76 
.78 
.80 
.82 
.84  
.86 
.88 
.90 
.92 
-94 
.96 
.98 
1. 00 
1. 1 
1. 2 
1. 3 
1. 4 
1. 5 
1. 6 
1. 7 
1. 8 
1. 9 
20 
2 4  
2 8  
3.2 
3.6 
4.0 

- - - - - - - 
1.013 
1.121 
1.375 
1. 385 
1.393 
1. 402 
1. 410 
1. 415 
1.421 
1. 424 
1.425 
1. 424 
1.421 
1. 384 
1.356 
1.337 
1. 323 
1. 314 

Angle of attack case, &(z) functions 

- fa 
vag 

- - - - - . - 
.004 

-_ 250 
-. 669 -. 651 
-. 631 
-. 613 
-. 592 -. 572 
-. 550 
-. 527 
-. 503 
-. 479 
-. 459 
-. 434 
-. 429 
-. 427 
-. 426 
-. 425 
-- 

- - - - - - - 
- - - - - . - 

.027 
- - - - - - - -. 170 
- - - - - - - 
- - - - - - - 
-. 234 
____.. 

- - - - . - - 
.062 
. 225 

-. 0144 
-. 0078 
-. 0108 
-. 011s 
-. 0152 
-. 0146 
-. 0122 
-. 0115 
-. 0135 
-. 0127 
-. 0129 
-. 0129 
-. 0129 
-. 0129 
-. 0129 
-. 0129 

Wing-incidence case, fan(z) functions 

- f o  
vi w 

0 . oO01 
.0005 
,0011 
.0020 
,0032 
.0046 
.0063 
.0082 
.0104 
-0129 
.0156 
.0186 
.0219 
.0255 
.0293 
.0335 
.0379 
.0427 . 0478 
.0531 . 0589 . 0649 
.0714 
.0781 
.0853 
.0928 . 1008 . 1092 . 1180 
. 1273 . 1371 
. 1475 . 1584 . 1689 
. 1820 . 1948 
. 2084 
.2229 
.2382 
. 2546 
.2722 
. 2912 
.3118 . 3342 
.3591 
.3871 
.4194 . 4584 . 5098 
.e366 

I 

I 

I 

I 

I 
I 
1 I 

f z  
vi w 
- 

0 
.0003 . 0010 
.0023 
.0040 
.0063 
.0091 
.0123 
.0160 
.0201 
.0247 
.0297 
.0350 
.0408 
.0469 
.0533 
.0600 
. 0670 
. 0742 
.0815 
.0890 
.0966 
. 1043 
.1119 
.1195 . 1269 . 1342 
. 1411 . 1477 
. 1539 . 1596 . 1646 
. 1688 . 1722 
. 1746 . 1757 . 1755 
. 1737 . 1701 . 1644 . 1562 
. 1452 . 1308 
. 1125 
.0894 
. 0603 
.0235 

-. 0237 
-. 0865 
-. 1777 
-. 4244 

I 
I 
I 

I 
i 

0 
.OM3 . 0010 
.0023 
.0040 
.0061 
. 0087 
.0116 
.0148 . 0181 
.0217 
.0253 
.0289 
.0324 
.0356 
.0395 
.0412 
. 0432 
. 0445 . 0450 
. 0447 
.0433 
. 0408 
.0371 
.0320 
.0254 
.0173 . 0074 

-. 0041 
-. 0174 
-. 0326 
-. 0497 
-. 0686 -. 0893 
-. 1118 
-. 1359 
-. 1616 
-. 1886 -. 2164 
-. 2451 
-. 2738 
-. 3021 
-. 3292 
-. 3539 
-. 3751 
-. 3908 
-. 3983 
-. 3939 
-. 3704 
-. 3121 
-. 0849 

! 
I 
I 
I 
1 

i 

~- 
k - 
Vi w 

0 
.0003 
.0010 
.0022 
.0038 
.0058 
.0080 
.0104 
.0128 
.0151 
.0171 
.0187 
.0197 
.0201 
.0196 
.0181 
. 0155 
. 0117 
. 0065 

-. 0001 
-. 0081 
-. 0177 
-. 0282 
-. 0410 
-. 0536 -. 0679 
-. 0829 -. 0985 -. 1142 -. 1297 
-. 1446 -. 1583 -. 1703 
-. 1808 -. 1870 -. 1897 
-. 1898 -. 1838 -. 1739 
-. 1565 -. 1350 
-. 1063 
-. 0716 
-. 0312 
. 0136 
. 0609 . 1075 
. 1480 
. 1727 
. 1605 

-. 0364 
1 

1 
1 
1 
1 
1 

1 
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TABLE 111.-ORIFICE LOCATIONS ON WING AND BODY OF WING-BODY COMBINATION 

pimemiom in inches measured from wing leading edge] 

y/a=1.020 (1) y/a= 1.253 I 
0. 400 
.775 

1.150 
1.525 
L900 
2 275 
2650 

0. 400 
.775 

1. 150 
1.525 
1. 900 
2 275 
2. 650 

1 a=0.75 inch. 

y/a= 1.916 I y/a=2.583 

_ _ _ _ _ _ _ _ _ _ _ _ -  0. 400 
0.775 .775 

L 525 1. 525 
1. 150 1 1.150 

1. 900 
2 275 
2 650 

1.900 
2 275 
2 650 

y/a=3.916 I e=90° 
- I 

2 275 
2 650 

-0.281 
.219 
.719 

1.219 
1.719 
2.219 
2 719 
3.219 
3.719 

e=450 

0.468 
.968 

1.468 
1.968 
2. 468 
2.968 
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